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ABSTRACT 
eLancing is an emerging paradigm for outsourcing technical services wherein freelancers bid on 

projects posted in a large-scale online marketplace. When viewed in concert with other open 

innovation services such as kickstarter.com, a new networked innovation model is emerging: "very 

large scale innovation". "Very large scale innovation" networks supported by the Internet are a large-

scale form of innovation networks connecting producers and inventors to investors and retailers. In 

this paper, we study the statistical mechanics of the network structure of the projects and providers in 

eLancing to ascertain structural preconditions for their effective operation. The unipartite project and 

provider networks and the collaboration network exhibit the properties of a homogeneous network 

whereas the associated skill networks exhibit the properties of an inhomogeneous, scale-free network. 

All of the networks except the provider network are small-world networks. These results point to the 

lack of coordination and collaboration between providers, which could provide an opportunity for 

them to pursue more complex projects, and a need for systems integration services. 
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1 INTRODUCTION 

The design and engineering of new products such as Ninja Blocks, ElevationDock, PebbleWatch, and 

others represents another model of networked new product innovation. In networked innovation, 

which is already being practiced by engineering firms, a small number of companies collaborate to 

produce a new product or service (Bergema et al., 2011, Maurer and Valkenburg, 2011). In contrast, a 

new networked innovation model is emerging from the combination of Web-based services such as 

quirky.com, to launch product concepts and receive expert and end-user feedback, kickstarter.com, to 

“crowd fund” product concepts, and freelancer.com, to identify technical experts to implement a 

product: “very large scale innovation”. “Very large scale innovation” networks supported by the 

Internet are a large-scale form of innovation networks (Udell et al., 1993). The difference between 

very-large scale innovation and networked innovation is that new product or service development is no 

longer necessarily limited to the resources of well-capitalized and resourced firms. Instead, the 

infrastructure of the Internet and networks of loosely coupled service providers make the technical, 

social, and financial resources necessary for innovation available to a broad range of individuals. 

Entrepreneurs and innovators capture innovation through the network infrastructure of the Internet. All 

that is needed is a ‘good idea’. 

Of critical importance to the design engineering part of “very large scale innovation” is assembling the 

technical experts and skills. Supporting this problem is eLancing, a marketplace of projects and 

technical and creative specialists. The eLancing marketplace involves a pool of a very large number of 

projects that are posted by clients and a large community of providers who bid to work on projects 

(Aguinis and Lawal, 2012). A client then selects a bidder to perform the task(s). The type of technical 

services offered range from search engine optimization to building sections of Web sites to business 

development. Testimonials by employers, who are generally small businesses, refer to the value of 

eLancing in helping them establish new products and services. They cite their lack of spare capacity to 

separate their innovation-oriented activities from core business operations, which is regarded as a 

critical step in achieving innovation (Govindarajan and Trimble, 2010).  

The eLancing marketplace facilitates connecting providers to projects by matching the skills required 

for a project and the skills nominated by the providers. This results in the self-guided formation of 

communities of providers who have similar and possibly shared skills and who are capable of 

servicing similar projects. Rather than being constrained by local geography for expertise (Brown and 

Duguid, 2002), eLancing systems provide an ecology within which to find complementary expertise. 

Large companies have yet, at least publicly, to leverage eLancing for design and engineering technical 

services. At least one major computer manufacturer utilizes open innovation to source project ideas 

(Bayus, In Press), though. We believe that product design and engineering firms will begin to consider 

sourcing specific technical expertise from eLancing sources in the future given that small industrial 

design firms already source technical expertise from eLancing sources and have launched successful 

products through these networks. 

This model of “very large scale innovation” can involve outsourcing both technical and creative tasks. 

Employers may have the need for a range of technical services associated with their innovation 

project. Loosely coupled (because they have no formal business or project relationships) service 

providers ‘collaborate’ to complete specific tasks associated with the innovation project. Formally, 

they do not ‘collaborate’ since they neither share information nor resources. However, they may work 

for the same employer on projects related to a larger project; thus, their collaboration is indirect. The 

very large scale of collaborators and projects being worked on at any time demands new research 

approaches to account for the scale of the collaborative community. Obviously, in an ideal freelancing 

community, there should be compatibility between the capability of providers and the skills needed to 

perform the projects. Put simply, the content of skills required by projects should at least match the 

content of skills offered by providers. However, beyond this superficial matching of available skills, 

we question whether certain structures of skill sets, projects, and service providers are associated with 

effective “very large scale innovation”. The particular research question that this paper pursues is the 

structure of an eLancing community affording an effective networked open innovation service. Based 

upon prior research in the social networks of small collaborative communities (Uzzi and Spiro, 2005) 

and the statistical mechanics of large-scale product development task networks (Braha and Bar-Yam, 

2004, Braha and Bar-Yam, 2007), we have good reason to believe that particular topological structures 

of networks of eLancing projects and providers are associated with the effective operation of eLancing 
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systems. The problem we are solving in this paper is to characterize the properties of project and 

provider networks of a large eLancing community to contrast structural differences between them, 

which may lead to inefficiencies in the operation of the eLancing marketplace. 

We study the statistical mechanics of the network structure of the projects and providers in eLancing 

to ascertain potential structural preconditions for their effective operation. In the first study, the 

topological characteristics of the networks are compared against small-world, scale-free, and random 

networks to determine the type of network which eLancing resembles. We postulate that the more the 

structure of the projects and provider networks resembles a small-world network, the more likely the 

eLancing service would perform effectively. In other words, the small-world network is a structural 

precondition for effective eLancing networks. Second, we study the minimum number of skills such 

that the entire network of projects and providers can be connected, producing what is known as a 

‘giant cluster’. Finally, we study betweenness centrality and closeness to identify important 

characteristics such as the central skills. 

2 METHODOLOGY 

Our perspective is that skills required by projects and the skills made available by providers organize 

the projects and providers into a network. That is, skills define the connectivity not only between 

projects and providers but also amongst projects and providers. A network of projects and providers 

emerge out of the mobilization of skills, as do clusters of providers having complementary expertise 

(Brown and Duguid, 2002) and projects having complementary requirements. To produce the provider 

and project networks, we define two bipartite networks. A bipartite network is a network having nodes 

of two different types. The provider-skill network G1  = (P, S, E)  where P is the set of providers (type-

1 node), S is the set of skills (type-2 nodes), and E  is the set of the edges between P and S (E  ⊆ P  

S). A provider in P is connected to a skill in S if the provider has that skill. We define the project-skill 

bipartite network G2 in the same way, but now for projects that need a certain skill. We define a third 

bipartite network, the collaboration network GC  = (P, R, E) wherein P is the set of providers, R is the 

set of projects, and E is the set of the edges between providers and projects. A provider from P is 

connected to a project in R if the provider has all the skills needed to perform the project. To study the 

clustering of providers and projects having complementary skills and requirements, respectively, we 

transform the bipartite networks G1 and G2 into four unipartite networks. The graphs GPV and GPJ 

represent the type-1 set of nodes in G1 and G2 respectively. For the type-2 nodes, we define GSPV and 

GSPJ, wherein two skills are connected if they both exist in a provider or project profile. The networks 

are constructed as undirected weighted graphs in all our analyses, unless the weight is ignored by the 

nature of the analysis (e.g., shortest geodesic path between two nodes). The weight of an edge in GPV 

and GPJ is based on the number of shared skills of two neighbor nodes. In networks GSPV and GSPJ, the 

weight of edges is defined by the number of times two neighbor nodes (i.e., skills) appear together in a 

project or provider profile. We consider the networks GSPV and GSPJ to represent the knowledge-map of 

the providers and projects, respectively. 

Any of these networks G can be defined by an equivalent adjacency matrix A, where: 

 (1) 

We obtained the data for the network structure of a popular eLancing site using the site’s API. The 

API allows us to query the database of projects and providers to obtain a dataset consisting of 

provider and project profiles. These profiles describe the skills required by a project and the skills 

offered by providers. We removed providers and projects not containing any skills, since these 

profiles were likely generated either as test projects or provider accounts. We selected ten 

thousand records, sequentially, from the downloaded profiles of projects and providers. 

We study different local and global metrics to study the topological structure of these networks. The 

first topological characteristic studied is the type of network. Empirical research on the structure of 

complex networks show that real-world networks can be divided into two classes: homogeneous and 

inhomogeneous networks (Albert and Barabási, 2002). This classification is based on a single metric: 

the distribution of the connectivity of nodes P(k), the probability that a node is connected to k other 

nodes. In a homogeneous network, most nodes have the same number of connections and the number 

Aij =
d number of edges between nodes i and j

0 otherwise

ì
í
ï
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of edges for any node approaches the average node connectivity. In contrast, in an inhomogeneous 

network, a small number of nodes are connected to a very large number of other nodes, and most 

nodes are sparsely connected. These networks are often called scale-free networks. 

One of the most intensely studied homogeneous networks is the small-world network. Additional 

defining characteristics of the small-world network are that there is a short distance between nodes and 

the nodes are highly clustered (Watts, 1999, Watts and Strogatz, 1998). We believe that a properly 

functioning eLancing system should have the topological properties of a small-world network. That is, 

GC, GPV, GPJ, GSPV, and GSPJ should have the topology of a small-world network. If this were not the 

case, and the networks were instead scale-free, then the consequence is that, for example, only a few 

projects can be serviced by a very large number of providers, but most projects can be serviced by only 

a few providers. This limits the efficiency (competitive bidding) of the marketplace. Other than having 

a homogenous node degree distribution P(k), two other characteristics define a small-world network: a 

clustering coefficient and a path length that are higher than a random network of the same node degree 

(Watts, 1999, Watts and Strogatz, 1998). The clustering coefficient is defined in two ways. The ‘social 

network’ definition of the clustering coefficient for a network is (Newman, 2010): 

  
(                   )  

                           
  (2) 

Watts and Strogatz propose an alternative local clustering coefficient measure (Watts and Strogatz, 

1998). The Watts-Strogatz local clustering coefficient for node i is given by: 

   
   

  (    )
 (3) 

where Ei is the number of edges that actually exist and ki is the number of edges connecting node i to ki 

other nodes. The path length is calculated as the mean geodesic distance between nodes in a small-

world network (Watts and Strogatz, 1998). 

The second topological precondition is the number of skills at which the entire set of projects or 

providers becomes connected into a single network, or what is known as a ‘giant cluster’. A critical 

probability pc exists such that below this probability of a connection between two nodes, the network 

is comprised of disconnected clusters, but above this value, a ‘giant cluster’ spans all of the nodes 

(Albert and Barabási, 2002). This value is known as the percolation point. The concept of percolation 

studies the robustness of a network to removal of its elements (Albert and Barabási, 2002). The 

removed elements can be either nodes or the connections between them. The former is called site 

percolation and the latter is called bond percolation. The removal of elements can be performed either 

randomly or in a targeted fashion to remove the most important elements, e.g., nodes with the highest 

degree. We study the existence of a percolation point by identifying the number of skills necessary for 

a ‘giant cluster’ to span the entire network. This minimum skill level, and the skills in this minimum 

set, is not simply the number and content of skills required by projects; it describes the set of skills at 

which point any skill, project, or provider can be reached. In the current study, we generate a reverse 

targeted bond percolation model for networks of providers GPV and projects GPJ. As described before, 

the edges in these networks are defined by the number of skills shared between pair of projects or 

providers. We first sort the skills by their popularity among providers and projects. Then, skills are 

added to the network, one at a time, starting from the least frequent skills. The effect of including 

certain popular skills in the formation of the ‘giant cluster’ is analyzed and visualized. 

Finally, an eLancing system is likely to have some key skills and key providers. To identify those key 

skills and providers, we studied the betweenness and closeness centrality.  The betweenness centrality 

accounts for the number of paths between two other nodes within which a node lies. To calculate this 

value, we follow a standard algorithm to calculate the number of geodesic paths between pairs of 

nodes that pass through a given node (Newman, 2010). Closeness centrality measures the distance, 

based on geodesic path length, between a node and all other nodes. 

3 RESULTS 

3.1 Basic Network Properties 
We calculated the basic properties of our networks including the number of nodes, edges, and the 

density of links using Pajek (de Nooy et al., 2012). Table 1 shows the basic properties of our networks 
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along with three other networks for comparison (Newman, 2010). Empty cells mean that the data was 

either not available or not applicable to our analysis. 

Table 1. Basic properties of eLancing networks and other networks (acquired from 

(Newman, 2010)) (number of nodes n; number of edges m; density ; mean node degree 
<k>; mean geodesic distance between connected pairs ρ; clustering coefficient - 

transitivity C; mean Watts-Strogatz clustering coefficient CWS; metrics for similar random 
network ρrand and Crand; small-wordness index Srand 

Network n m  <k>  C CWS 
rand

 C
rand

 S
rand

 

G1 10424 68021 0.016 13.0 2.94      

G2 10346 31113 0.009 6.0 3.88      

GC 20000 2566270 0.0128 256.6 2.09 0.148 0.298 2.47 0 NaN 

GPJ 10000 16961830 0.339 3392.4 1.93 0.759 0.824 1.66 0.339 1.92 

GPV 10000 54149486 1.082 10829.8 1.46 0.739 0.790 1.0 0.999 0.5 

GSPJ 346 4862 0.0814 28.1 2.23 0.343 0.593 2.02 0.079 2.26 

GSPV 424 26055 0.290 122.9 1.72 0.576 0.737 1.71 0.290 1.14 

Film Actors 449913 25516482  113.43 2.30 0.20 0.78    

Physics 

Coauthorship 

52909 245300  9.27 6.19 0.45 0.56    

Internet 10697 31992  5.98 3.31 0.035 0.39    

 

There are a few observations to make from results presented in Table 1. The density and mean node 

degree of networks that involve providers, G1, GPV and GSPV, are about two or three times higher than 

the networks that involve projects G2, GPJ and GSPJ. Looking at the mean degree of skill network for 

providers GSPV (<k> = 122.9) reveals that the higher density and mean degree of said networks is due 

to the higher number of skills shared by providers, in comparison to the number of skills shared by the 

projects. Another interesting result in Table 1 is the average node degree of the collaboration network 

GC (<k> = 256.6). Even though there are millions of projects in the eLancing system, and 10,000 

providers were selected for this analysis, each provider is qualified to perform only a fraction of the 

available projects. We will investigate this issue further in the next section in discussing the small-

worldness of the collaboration network GC. 

 

   

Figure 1. Cumulative distribution of node degree for collaboration network (left), provider 
and project networks (middle), and skill networks (right) 

Second, we tested the node degree distribution P(k), which is the probability of finding a node having 

k or more connections. Figure 1 shows the plots of the node degree for the GC, GPV, GPJ, GSPV, and GSPJ 

networks. We note an unusual pattern. Whereas the GC, GPV and GPJ networks follow an exponential 

distribution, which is characteristic of homogenous networks, the degree distributions of the GSPV and 

GSPJ networks follow a power law, which is characteristic of a scale-free network. In other words, there 

are a relatively few number of skills in demand in this eLancing market. There will be intensive 

competition by providers over a few skills, and some providers will enjoy a non-competitive bidding 

environment for projects requiring the least-requested skills. In contrast, the more homogeneous GPV 

and GPJ networks imply a behavior wherein projects duplicate the skills required by other projects and 

likewise providers duplicate the skills offered by other, competing providers. The consequence of this 

‘follow the herd’ mentality in terms of describing the skills required to complete a project or the skills 

available results in projects and providers being connected to many other similar projects or providers, 

respectively. 
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3.2 Network Topology 
To examine whether the network structures resemble a small-world network, we calculate the mean 

path length and clustering coefficient of the networks along with basic network metrics using Pajek. 

Table 1 shows the results of these analyses for our networks and other networks for comparative 

purposes. All of the networks except GPV satisfy the conditions of a small-world network, which is that 

its clustering coefficient should be greater than the clustering coefficient for an equivalent random 

network (Humphries et al., 2006). The most important network that should satisfy the small-world 

requirement is the collaboration network, GC. While we find that it does satisfy the small-world 

network condition, its clustering coefficient is nonetheless small compared to the other eLancing 

networks, which means that information exchange between projects and providers is less efficient than 

a network with a higher clustering coefficient.  It compares similarly with the film actors network; 

both networks have about 2 “degrees of separation” between a randomly selected project and a 

provider or between two randomly selected actors. 

To examine the small-worldness properties of the skill networks, we visualize the local clustering 

coefficient for GSPV and GSPJ. Figure 2 illustrates local clustering coefficient as a function of node 

degree. In the skill network of projects GSPJ, we find that the nodes with higher degree also have a 

higher clustering coefficient, which is opposite to many networks (Newman, 2010). Higher clustering 

coefficient is usually a property of small groups, where the nodes have relatively few neighbors (i.e., 

low degree), but are highly connected among each other (i.e., high clustering coefficient). The 

clustering coefficient graph for skills of providers GSPV follows this principle but the graph for skills of 

projects opposes it. 

 

Figure 2. Local clustering coefficient as a function of node degree 

There could be different explanations for this result. One interpretation is that there are many projects 

that are very similar, thus making large groups of interconnected nodes with high degree. Such 

projects may represent arbitrary breaking down of larger projects into smaller tasks, which are then 

outsourced via eLancing. This outcome may also result from differences between the nomenclature of 

skills needed for projects and the skills nominated by the providers. That is, the skills needed by 

projects have a classification that is different from the classification of skills among providers, even 

though they have similar names. For example, PHP and HTML skills might be considered two 

different skills among providers but they always appear as a unit of PHP+HTML in the projects. It 

may also be that the project employers simply copy existing projects in defining their own. That is, 

given relatively little guidance as to what skills the providers offer, the project employers simply copy 

the skills listed in similar projects, which would lead to the high clustering coefficient in the GSPJ 

network. Regardless of its cause, this difference shows some incompatibility between the skills for 

projects and providers. The implications of this incompatibility are discussed in conjunction with the 

results of the other analyses in Section 4. 

3.3 Percolation 
In this section, we describe the results of the percolation of the GPJ and GPV networks, that is, the set of 

skills at which point an entire network spans the network of projects and skills. This is the critical set 

of skills that enables the eLancing system to have a fully connected network of projects with 

complementary skill requirements and providers with complementary skills. There are 346 distinct 

skills listed in project records and 424 distinct skills listed in the provider records. The rate of change 

of the size of the giant cluster and the percolation threshold characterize the sensitivity of the 
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connectivity of the networks to the removal of skills. Loss of connectivity results in the isolation of a 

project or a provider from the rest of the network. To produce the percolation model, we follow the 

procedure associated with reverse targeted bond percolation (Albert and Barabási, 2002, Newman, 

2010). We first sorted all of the skills based on their frequency of appearance. Then, we incrementally 

add one skill, starting from the most frequently requested or provided skill, to a null GPJ and GPV 

network, wherein the addition of the skill results in the establishment of associated edges in GPJ and 

GPV. Initially, the size of the largest cluster in the null networks is 1 because all nodes are isolated. 

Then, we begin to connect the nodes by adding one skill at a time, starting from the least frequent skill. 

We continue to add skills to the networks until all the skills have been added. At each step, we 

calculate the size of the ‘giant cluster’. 

Figure 3 presents the size of the giant cluster in each step of adding in an additional skill to the 

networks. As Figure 3 illustrates, the size of the giant cluster starts to grow after including about 150 

skills. However, the growth of the giant cluster in the projects network GPJ is faster than in the 

providers network GPV. The size of the giant cluster in the provider network continues to grow slowly 

until about 400 skills are included and then shows a sharp rise until the end. There are only a few skills 

responsible for the integrity of the network, and the network is highly vulnerable to removal of those 

skills. In other words, there are skills that one provider should have if one provider wants to be 

accepted in the community of providers and be able to bid on many projects. In contrast to the 

providers network, the projects network percolation model shows a more resilient behavior. The 

removal of each skill will reduce the size of the giant cluster by a fraction (i.e., isolate some projects), 

but the network retains its structure and has an overall resilience to removal of skills. 

 

 

Figure 3. Reverse targeted bond percolation model for networks GPJ and GPV 

3.4 Centrality and Important Skills 
In this section, we examine the networks on a local scale to find out whether there are important (i.e., 

central) skills that cause the different behaviors of the projects and providers networks on the global 

scale. To test whether there is a simple overlap between most requested skills and most widely 

available skills, Figure 4 illustrates the top ten popular skills offered by providers and required by 

projects. The proportional sizes of the nodes (circles) represents the relative number of skills 

requested/offered and the gray scale intensity of the edges represents weight of connection between 

each pair of skills. As this figure shows, there are triplets of skills with high popularity that also appear 

with each other frequently. For example, many providers include “Data Processing”, “Excel”, and 

“Data Entry” in their skill list. This causes specific motifs to emerge among communities of providers 

or projects where triplet clusters of skills tend to appear frequently. 

To identify the distribution of the critical skills in each network, we compute, with Pajek, two 

additional metrics of the centrality of nodes in addition to node degree described previously: 

betweenness centrality and closeness. Betweenness centrality counts the number of geodesic paths that 

pass through each node (Borgatti, 2005) on the premise that important nodes have many paths through 

them. The study of betweenness is founded upon the concepts of flows in the networks. This is not 
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specifically relevant to our networks of providers GPV, projects GPJ, or skills GSPV and GSPJ, because 

there is nothing being passed within each network except a flow of projects (i.e., tasks) to the 

providers. However, Freeman (Freeman, 1979) suggests applying the betweenness centrality not only 

as a measure of flow but also as a way of examining the network’s structural connectedness. We 

examine the betweenness centrality to compare their general connectedness. Closeness measures the 

distance between a node and all other nodes. Central nodes have very short paths to all other nodes. 

  

Figure 4. Ten most frequent skills required by project (left) and offered by providers (right) 
and their weighted connections 

Figure 5 illustrates the cumulative distribution of betweenness centrality for the unipartite networks. 

The network betweenness centralization, a measure of dispersion or inequality of betweenness, of the 

provider skills network GSPV is 0.021 compared with a value of 0.123 for GSPJ, which is one order or 

magnitude higher. In terms of local properties of nodes, GSPJ has about 10 nodes with a betweenness 

higher than the nodes with high betweenness in the network of provider skills GSPV. This means that 

the project skills network is more structurally connected than the provider skills network, confirming 

the percolation results. 

 

  

Figure 5. Cumulative distribution of betweenness centrality for provider, project, and skill 
networks 

Table 2 lists skills ordered by betweenness centrality in each network. Note that the value of closeness 

is reported such that the higher the value of closeness, the closer all other nodes are to the reported 

node. We find a correlation between these two measures of centrality. As the results in this table 

indicate, there is a fairly strong mismatch between the most central skills requested and the skills 

provided. One problem is that the level of granularity of the skills is not equivalent. HTML, PHP, 

Javascript and MySQL are skills relevant to Website Design; likewise Photoshop is relevant to 

Graphic design. Yet, they are listed as independent skills. This mismatch suggests that both employers 

and providers should be clearer as to whether they require/provide. We note the project skills network 

shows a preference by employers for component skills rather than comprehensive services. For 
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example, the component skills PHP, HTML, Javascript, and MySQL are related to Website Design; of 

these component skills, only PHP and Javascript are central skills in the provider skill network GSPV. 

Table 2. Most important skills in GSPV and GSPJ networks based on betweenness 
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Data Entry 27677 0.8807 0.0229 PHP 7435 0.6952 0.1266 

Photoshop 20486 0.8369 0.0189 Website Design 6178 0.6443 0.0657 

Excel 19079 0.8386 0.0173 Graphic Design 4841 0.6263 0.0622 

Website Design 25155 0.8303 0.0173 HTML 5120 0.593 0.0332 

Graphic Design 17504 0.8127 0.0159 Javascript 1948 0.5807 0.0243 

PHP 17042 0.8111 0.0147 Internet Marketing 2896 0.5718 0.0231 

Data Processing 18186 0.8096 0.0127 MySQL 2674 0.5708 0.0204 

Logo Design 15378 0.7839 0.0111 SEO 2181 0.5757 0.02 

Javascript 14414 0.7626 0.0098 Articles 2595 0.5335 0.0105 

Banner Design 13701 0.7464 0.0079 Article Rewriting 1744 0.5187 0.007 

 

The differences between betweenness centrality of providers network GPV and projects network GPJ is 

more obvious. There are many nodes in the GPJ network that have a betweenness value higher than the 

maximum seen in GPV network. The implication is that there is a high degree of competition between 

providers for a set of central skills, but only a few skills are central to providers. 

Table 3. Five projects and providers with highest betweenness centrality in GPV and GPJ 

 Record No. Skills Count Degree Betweenness Closeness 

G
P

V
 

PV1003336 25 47167 0.0002 0.8800 

PV1016726 24 65964 0.0002 0.8807 

PV1012521 19 41580 0.0002 0.8987 

PV1001728 23 41768 0.0002 0.8435 

PV1016209 20 45770 0.0002 0.9070 

G
P

J 

PJ1008031 5 15799 0.0103 0.6739 

PJ1008915 5 9053 0.0088 0.6218 

PJ1008914 5 11267 0.0077 0.6199 

PJ1012436 4 7450 0.0069 0.6091 

PJ1000122 5 11215 0.0068 0.6225 

4 DISCUSSION AND CONCLUSION 

This paper presented an empirical analysis of an eLancing site through the lens of complex networks. 

We demonstrated how the properties of small-world networks, percolation, and centrality provide 

valuable insights on the relation between the topology of eLancing as an innovation network and the 

performance of the network. We found some surprising results in studying the network structure of 

eLancing. Whereas the unipartite project and provider networks and the collaboration network exhibit 

the properties of a homogeneous network, the associated skill networks exhibit the properties of an 

inhomogeneous, scale-free network. A few skills are in high demand, but most skills are not important. 

Also, all of the networks except the provider network GPV are small-world networks. Thus, while the 

projects and skills are efficiently connected to each other in a small-world topology, the providers are 

not. The loose connectivity of the provider networks is confirmed by its lower betweenness centrality. 

This result points to the lack of coordination and collaboration between providers, which could provide 

an opportunity for them to pursue more complex projects. Finally, the percolation behavior of the GPV 

network shows that about 1/3 of the skills provided are not actually essential to the operation of the 

eLancing site. 

Based on the findings of this study, we claim that the small-world structure of the projects and 

provider networks best supports an effective eLancing service. However, while topological properties 

may produce structural preconditions on the effectiveness of eLancing, we have only begun to 
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examine the performance of the eLancing. Specifically, we do not yet correlate the structural 

properties to the actual performance, such as the feedback provided by employers to providers and the 

number of bids placed on projects. Future studies will consider these factors to further identify the 

topological preconditions for an effective eLancing system. The ecosystem of eLancing provides a 

valuable source of data for the study of innovation networks, especially in the establishment of metrics 

to characterize the relationship between the topology of the networks and their behavior. Such 

information can then be translated into studies of innovation networks in “bricks and mortar” business. 

Based on the research design of this study, knowledge-oriented transactions between companies would 

provide the most valuable insights into the effectiveness of their network organization. 
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