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ABSTRACT 
Mechatronic design is a multidisciplinary design and has to face several challenges. One challenge is 

to provide a common understanding of the mechatronic system to be developed to all participating 

disciplines. This is done by sets of models which have many relations between them. If there are 

inconsistencies in the models, the whole mechatronic development project is endangered. This paper 

presents an agent-based concept for an automated consistency check of the models of the early design 

phase, which enables the providing of a reliable base for the further design process. After presenting 

the challenges of mechatronic design, the design models are abstracted to provide a broader 

application range of the presented concept. The structure of the consistency rules is presented and the 

agent-based concept is shown. 

Keywords: agent-based system, consistency check, early mechatronic design, 

Contact: 

Michael Rauscher 

University of Stuttgart 

Institute of Industrial Automation and Software Engineering 

Stuttgart 

70569 

Germany 

michael.rauscher@ias.uni-stuttgart.de



 

2 

 

1 INTRODUCTION 

In mechatronic design multiple disciplines are involved. Depending on the definition of the 

disciplines, mechanical engineering, electrical or electronic engineering and information technology 

are integrated. Sometimes other disciplines like control engineering or fluid design are also involved. 

This multidisciplinarity can be a big benefit for engineering mechatronic systems. It enables the use of 

all advantages of the single disciplines. In the late 80s, when mechatronic systems began to emerge, 

the mechanical engineering was the main discipline and a mechanical basis was extended by electronic 

components. Due to the increasing importance of the information technology, this discipline was also 

integrated, but the unbalance between the disciplines persisted. The growing importance of the 

electrical engineering and the information technology equalized the emphasis of the involved 

disciplines more and more. Nowadays, the goal is to give all involved disciplines the same emphasis, 

to achieve better solutions. In order to achieve this goal, developers of mechatronic systems are 

exposed to various challenges, which are presented in the next chapter. 

2 CHALLENGES OF MULTIDISCIPLINARY DESIGN 

The involvement of multiple disciplines in mechatronic design is a first challenge. This means that 

developers from different disciplines have to incorporate their discipline and have to account for all of 

the constraints of it. The integration of these sometimes differing concerns would not be a special 

challenge, if the developers of the different disciplines had the same or a similar educational 

background. But due to the fact that for example mechanical engineers get another education than 

electrical engineers, with other educational contents and even differing development processes, the 

synchronization of the disciplines is not easy. Often same terms have different meanings for the 

different developers or they are talking about the same issue, but using different terms. To deal with 

these different terminologies, unified and often project specific terminologies can be used. In the VDI-

guideline 2206 (VDI 2004), the V-model is presented as a common process model for the development 

of mechatronic systems to unify the different development processes. 

Another challenge is the common understanding of the system to be developed (Svensson et al., 2003). 

Each developer has his specific view on the system and ignores information not relevant to him 

consciously or unconsciously. This can be seen often in a lack of mutual understanding or problem 

awareness for the other disciplines. An approach to deal with that is the Virtual Prototyping (VDI 

2004). In early phases of the development virtual or sometimes real prototypes are created to have a 

vision of the common project goal and to understand the (partial) development of the other disciplines 

better.  

A third challenge is that the different disciplines normally use different models to describe their 

development. Due to the fact that in each case other information is relevant, each discipline uses its 

special models. All these models have dependencies between each other, because in the end they 

describe the same mechatronic system. Gausemeier (2005) and Frank (2005) present a system of 

coherent partial models for describing the principle solution of self optimizing systems, which creates 

a common base in the early design phase to be used in the following discipline specific design phase. 

This discipline specific design phase was simplified by this common reference, but the challenge to 

keep the consistency of different dependent models is still present 

 

Figure 1: Challenges in mechatronic engineering 
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These challenges, visualized in Figure 1, make the mechatronic development or, more general, the 

multidisciplinary development difficult. Although if approaches using multiple common models in the 

early design phase are improving the development process, the risk of inconsistencies between the 

different models is still given. That means that if one model is changed and the change is not properly 

propagated to the other models, the developed mechatronic system might not work. If such a problem 

is not detected until the system is built, the removal of the problem is very expensive. An automated 

consistency check will help to reduce that risk and to improve the quality of the development. The 

check can be executed during the development process and will run in background. Due to the fact that 

the test is automated, the risk that a person might miss some issues is reduced. This will raise the 

quality of the mechatronic system and reduce the cost of the development. To enable such an 

automated consistency check, the models have to be formalized and abstracted to a more common 

form, which will be done in the next chapter. 

3 ABSTRACTION OF THE DESIGN MODELS 

One good approach for a common view in the early design phase is the system of eight coherent partial 

models which is presented by Frank (2005). Due to the fact that for some projects other or additional 

models are used, the partial models are abstracted to meta models. This enables the concept to be used 

also for other models than the partial models. Afterwards, the models have to be formalized and 

modeled in software, in order to be readable or interpretable for the automated consistency check. 

3.1 Exemplary abstraction of the active structure model 
As the model Active Structure is easy to understand, it is used as an example to present the abstracted 

model. In the original model of Frank (2005) there exist system elements, which have different 

interfaces. The system elements can be connected to each other by using these interfaces. A connection 

can symbolize a material, an energy or an information flow. Fig. 2 shows an extract of the active 

structure of the accelerating unit including a speed control of an automated soccer ball shooting 

machine.  

 

Figure 2: Exemplary active structure of an accelerating unit (representation according Gausemeier and 
Kahl (2010)) 

This machine is able to shoot soccer balls very precisely at a goal with a very high velocity. The 

electrical engine, the gear and the rpm-sensor were combined to the logical group “accelerating unit”. 

The flows between the single elements of the active structure (energy flow and information flow) have 

been specified more detailed, as the energy is specified as mechanical and electrical energy. 

Additionally to the original specification, in this example the differentiation between the different 

involved disciplines is realized by different colors of the system elements. 

This representation of the active structure has to be abstracted to a meta active structure, to guarantee a 

wide applicability. In the abstraction the system elements become hardware/software components 

(HW/SW component), which can either be an elementary component or a composite component. The 
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connection between components, according to the active structure, can be a flow with the 

specialization of material, energy or information flow. Beside the flow, the dependency is introduced 

as an additional link between HW/SW components, to allow the applicability on other models. This 

dependency enables the modeling of logical relations such as “depends on” or “calls for”. The flows 

can be detailed during the design phase. An energy flow can be specified for example as electrical 

energy. Furthermore, electrical energy can be described in details as voltage and current values. 

Similarly, other flow types are being specified. The meta model of the active structure resulting from 

the abstraction is presented in Fig. 3 using UML. 

 

Figure 3: Meta model for the active structure 

The meta model has to be represented in software to allow automated consistency checks. This means 

that the meta model has to be transformed in a class diagram in order to use it in software.  

 

Figure 4: Extract of the class diagram for the meta model active structure 

HW/SW components are represented as classes with the attributes name and type. An HW/SW 

component can have one or more interfaces. These possess the attributes type and direction (in/out). 

An interface can have refining properties. By adding properties, which can be done during the whole 

design process, the active structure can be detailed. Properties consist of a property type and a 

corresponding value. Connections are represented as discrete classes. They possess the attributes name 

and type. Due to the fact that connections have to represent the physical connection elements in the 

subsequent design they also possess interfaces. Connections have the same properties as their 

interfaces, which can be used to detail them. The difference between the various types of flow and 

their dependencies is realized by inheritance. This means that for example Flow is a subclass of 
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connection and the different types of flow are subclasses of Flow. An extract of the class diagram can 

be seen in Fig. 4. 

The presented formalization in software is necessary for all models, which are to be used for the 

automated consistency check. After that, the rules which are applied for the check have to be modeled. 

4 RULES FOR CONSISTENCY CHECK 

The overall goal is to ensure the consistency of the design models. Therefore, rules, which check this 

consistency, are needed. There exist two types of rules: one type will guarantee the correct formal 

assembly of the models e.g. the definition of connection possibilities of elements. The other type is to 

check the content of the models, e.g. for assuring the correctness and the integrity of connections 

between elements. The first type of rules represents formal constraints and therefore is not in the focus 

here. The second type is much more interesting and will be presented in the following lines. These 

rules have to compare properties or attributes of the objects or the connections of the models. 

According to Wagner (2008), the rules should contain two conditions, a precondition and a main 

condition. The precondition qualifies the scope of the application of the rule. In other words, the 

precondition describes in which cases a rule has to be considered. An example for such a precondition 

is the existence of several energy sources in a model. The main condition contains the facts to be 

checked, e.g. the equality of properties of two interconnected objects. The conditions can exist in 

different forms. According to that, a condition can be the comparison of two values or the comparison 

of whole object structures. Additionally, a condition can be the existence of properties or of an object. 

Finally, a condition can be a logical combination of other conditions, which are associated e.g. with an 

AND or an OR. The representation of a rule can be seen in Fig. 5. 

 
Figure 5: Representation of rules 

 

Rules are used to check the consistency within a single model and within a system of several models.  

An example for the first case is that the interfaces of connected elements in the active structure have to 

have equal properties. An electrical energy flow, marked as an outgoing flow with a voltage of 5 volts, 

cannot be connected to an electrical energy flow, marked as an incoming flow with a voltage of 12 

volts. Depending on the already reached detail level of the design process this rule is only applicable, 

if the necessary information is already modeled.   

In the second case, rules are used to check the consistency between two or more models. An 

exemplary rule is, that the signals, which are defined in the behavior model (e.g. fire conditions of 

transitions), must also be defined as information flows in the active structure, if they have no other 

origin.  

In order to realize a substantial consistency check, a large rule base is needed. For each relation 

between elements, several rules are necessary. For example for the connection of an electric motor to 

an energy source more than 5 rules have to be checked depending on the level of detail: electric energy 

flow, electric energy type for input and output interfaces, same voltage, same frequency, consuming 

power less than possible producing power etc. 
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The result of the application of these rules is a consistent model or system of models which describes 

the early design of a mechatronic system. The consistency check itself is a time-consuming process, 

which can be executed after having finished modeling or in parallel to the modeling. This article 

presents an approach where describes how the consistency check can be performed using software 

agents.  

5  AGENT-BASED CONCEPT FOR CONSISTENCY CHECK 

Due to the fact that the consistency check should run in background but provide an active behavior, 

e.g. active information of the developers about detected inconsistencies, software agents can be used to 

provide that functionality. Software agents or simply agents are encapsulated software units, which 

provide an active behavior and follow certain goals (Jennings, 2000). They are able to communicate 

with each other to reach their goals. Agents are often used for systems which are naturally distributed 

or need a high degree of flexibility. This enables a distributed development of a mechatronic system, 

because the agents can perform the consistency check even if the different models are distributed on 

different PCs. Another advantage is that not all situations have to be foreseen during the development 

of the agent system. This means that for example additional agents can be added to the system during 

runtime and they can communicate and work together without the need of changing the source code of 

the application. Agents can be classified in two main types: reactive and deliberative agents. A reactive 

agent reacts on changes of its environment with a predefined behavior. A deliberative agent also reacts 

on changes but has a proactive behavior and tries to plan its reactions. The agents presented here can 

be seen as reactive agents. Using agents has the advantage that a new mechatronic development model 

can be easily added to the consistency checking system without changing the system, only 

corresponding consistency rules have to be added.  

In order to profit from that advantages, an entity-based approach is used, which means that each 

development model will be represented by a model specific agent. Inside some models there exist 

further agents. An overview of the architecture can be seen in Fig. 6. 

 
Figure 6: Architecture of the agent-based system 

5.1 System agent 
A system agent represents a system of models. It is the highest agent in the hierarchy of the agents. It 

will finally decide if the system of models is consistent or not. Therefore, it knows all contained 

models respectively their corresponding agents (model specific agents). It is able to communicate with 

those agents in order to get their inspection results. It will be informed by model specific agents if a 

change in one of the models was made and sets the system of models to an inconsistent state. If it gets 

a positive answer for the consistency check from each of those agents, it will decide that the system of 

models is consistent then. 
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5.2 Model specific agent 
Each model specific agent represents one model. Due to the fact that there is a significant difference 

between the models, this agent is an abstract agent. In the realization there will be for example an 

active structure agent, a behavior agent etc. The term model specific agent will be used in the 

following, if these agents are meant in common. A model specific agent decides if its model and the 

dependencies to other models are consistent. If its corresponding model was changed by a developer, it 

will inform the system agent about that change and will check the consistency of its model. Therefore, 

it requests its sub agents, if they exist, to perform a consistency check on their level, checks the 

consistency of its model at a common level on its own and collects the consistency check results of the 

sub agents. Sub agents are model object specific agents, which are presented in the next chapter. Some 

models consist of several parts like the behavior model consists of multiple behaviors or the active 

structure models consists of HW/SW components. These parts are represented by separate agents as 

well.  

5.3 Model object specific agent 
A model object specific agent represents one modeled object like a HW/SW component in the active 

structure model. This agent is also an abstract agent and must be specified for the object it has to 

represent. It decides about the consistency of that object. Therefore, it receives the request to check the 

object and its dependencies from the corresponding model specific agent. The agent will perform the 

check and sends the results of its check to the requesting agent. In case of the component agent this is 

the active structure agent.  

The agents are running in background and monitor their corresponding objects. If an agent detects a 

change in its object by a user, it will inform its directly related objects respectively the corresponding 

agents. They principally assume that there exists an inconsistency now and perform a consistency 

check applying the already mentioned rules. If they detect an inconsistency, they will inform the user 

about it. Else, they set the models to consistent again and wait for the next change by the user.  

5.4 Exemplary implementation of the agents 
In case of the active structure model, the model specific agent will be realized as an active structure 

agent. It is responsible for the active structure model and will check its consistency.  

 
Figure 7: Exemplary agents for the active structure model and the behavior model 



 

8 

 

Therefore it knows all the HW/SW components of the model including their connections. By applying 

the corresponding rules, it will check the model. Additionally, there exist so called component agents, 

responsible for the HW/SW components. They will check the internal consistency of each component 

and its connections. For the behavior model there exists a behavior agent. Due to the fact that the 

behavior model consists of several parts, state chart agents represent the state charts.  

These agents are able to communicate with each other and request information about the other models 

respectively objects. Each agent has a set of consistency rules it has to check after detecting a change. 

The results of the check are presented to the user so he can fix the inconsistencies found.  

8 CONCLUSION AND OUTLOOK 

Mechatronic design implies many challenges for the developers. Using common models and 

integrating all involved disciplines in the early design phase is one attempt to face these challenges. To 

reduce the number of problems in the later design phases, the consistency of the different models of 

the early design phase is very important. An automated consistency check eliminates human mistakes. 

Software agents provide an active and flexible behavior to perform this check. The results are reported 

to the developers to fix detected problems. Retrieving solutions for the inconsistencies by the agents 

themselves, like it is presented by Kratzer et al. (2011), is only possible in very few cases at this early 

state of the design. But, depending on the number of rules in the knowledgebase, this concept provides 

an extensive and automated consistency check of the design models. The abstraction of well-known 

models like the system of partial models of Gausemeier (2005) to meta models provides a broader 

range of application of the presented concept. The next step is to finish the implementation of the 

concept in a prototype in order to present the automated consistency check for a real mechatronic 

design. If the consistency of the early design models can be ensured, the concept can be extended to 

the later design phases, including the work of Kratzer et al. (2011). This will enable a design 

supporting system for the complete mechatronic design process, which will reduce the mistakes in 

mechatronic design and will reduce the costs for high quality mechatronic systems. 
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