

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED11
15 - 18 AUGUST 2011, TECHNICAL UNIVERSITY OF DENMARK

AN APPROACH FOR THE AUTOMATED SYNTHESIS
OF TECHNICAL PROCESSES
Tino Stanković1, Kristina Shea2, Mario Štorga1 and Dorian Marjanović
(1) University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia
(2) Technical University of Munich, Institute of Product Development, Germany

1

ABSTRACT
This paper considers the implications of introducing the computational method for technical process
synthesis founded on the Theory of Technical Systems as an addition to the current Computational
Design Synthesis (CDS) methods and tools. A computational method containing formal model of
technical process based on labelled multidigraph and formal model of technical process synthesis that
is based on labelled multidigraph graph-grammar transformations will be presented. The result of
applying transformation to the multigraph is generation of variants showing how technical process
could be accomplished.

Keywords: computational design synthesis, formal modelling, technical process synthesis

1 INTRODUCTION
Efforts in the research and development of computational support for conceptual design are motivated
by a notion that such support could provide designers with novel or even creative concept alternatives
as the result of computationally augmented solution space search. Generation, evaluation and selection
of a concept variant are processes based on designers knowledge, experience in the field and
information retrieved from the external sources [1]. If a computational system as an aid to design
process can provide concept alternatives then designer being aware of these can make well established
decisions in order to design new product more efficient. Computationally generated concept
alternatives can thus serve as valuable starting points to design solution development. The field of
Computational Design Synthesis (CDS) [2] brings together advanced computational algorithms with
existing design theory and methodology in order to provide means for computational creation of
design solution alternatives. Going beyond just dealing with multi-objective optimisation on well
established solution concepts, the CDS considers design synthesis as its focal point thus being more or
less aimed at early design phases where the synthesis is the most intensive. Most common [2], CDS is
called for with a solution creation requiring generating and testing alternatives in numbers too large
for a designer to seek out.
Work that is presented within this paper aims at the introduction of computational support intended for
the very beginning of the computational design phase where according to the Theory of Technical
Systems (TTS) [3] a technical process needs to be established. This work is thus coherent with the
efforts made within the CDS research community as to provide better search and solution generation
possibilities to designers by developing computational support for the early design stages [3].
However, what differs in respect to the current CDS efforts is the selection of the TTS as theoretic
fundament thus recognizing the technical process synthesis as a requirement if the function of
technical system that has to be designed is considered as the consequence of its participation within
technical process. Moreover, according to the TTS, a technical processes synthesis is understood as a
key element if an innovative design of new product is to be accomplished. As Section 3 of this paper
will show, due to different methodology adopted the CDS methods in general do not consider
technical process level, thus specifying the function of the product as an input to the solution
generation what imposes limitations to the search space. Although none of the current CDS methods
presents a complete framework adopting all of the conceptual design stages, the introduction of the
technical process synthesis will prove beneficial when such frameworks will appear regardless to the
methodology applied.
This work will present a computational method containing formal model of technical process (TP)
based on labelled multidigraph and formal model of technical process synthesis that is based on graph

grammar transformations. The assumption is that if engineering knowledge about technical processes,
technological principles and the necessary effects is formalized and embedded within set of graph
grammar productions than the variants of operand transformation can be created. The result of
applying productions is decomposition of technical process from the initial black-box form to the
establishment of chain of operations with operands in their initial, intermediate and desired states
supported by the necessary effects. The paper will include an example showing method’s application
and the resulting implications to the definition of technical system’s function. Conclusion will close
this paper.

2 THEORETICAL BACKGROUND
According to the Theory of Technical Systems [3] technical evolution, design and product
development are explained as a response to those needs and requirements within human society for
which, to be satisfied, an assistance of technical means was necessary. Such teleological view implies
as a starting point to a development of a new product a definition of technical process as a process in
which necessary effects must be delivered by technical product and human beings in order to enable
purposeful transformation of operands. Following the systemic reasoning [3], technical process is
modelled as transformation system composed of series of operations interrelated with operand flows
and supported by the necessary effects. Changing of state of operands in the desired manner can be
accomplished in different ways in respect to the various technological principles which prescribe and
establish a sequence of necessary operations supported with effects that must be performed within
transformation processes.
Based on designer’s experience, the knowledge of existing technologies (technological principles) and
on the understanding of the task, a decomposition of technical process is performed in order to gain
insights and to reveal details about the transformation process. The consequence of decomposition
performed is a conception of information necessary for design of technical system [1], [3]. In the
decomposition process designers must consider different duties that human operator and technical
system have to fulfil in order to enable transformation of operands. By reasoning how and with what
to perform a transformation in order to achieve a desired state of operands designer establishes
technical process. In the end, it is up to designer’s knowledge to choose the most suitable
technological principle by which the transformation will be accomplished.
Design theory states [1], [3], [4] that technical processes are established as sequences of operations
based on different technological principles. Depending on the complexity of the given tasks, the
technical process might be supported by several technical systems of different levels of complexity.
The interplay between human operators and technical systems, i.e. the product being designed, results
with the provision of the necessary effects. Possibilities of product realisation are therefore understood
in respect to the extents of technical system’s participation in the transformation. Determination of
these duties as an ability to deliver necessary effects thus defines a technical system’s function as an
entry point by which the organ structure of a technical system will be established [2]. Implications and
importance of the consideration of technical processes in respect to whole of the conceptual design
was thus one of the prime motivators why to research computational means that could aid designers at
that particular stage of design process. Taking into account how a technical system would participate
within technical process is clearly at least equally important to the other design phases and since it is
the first stage it may contribute the overall success of design process by the most.

3 RELATED WORK
To consolidate various approaches, methods and tools that emerged over the years, efforts were made
to establish a generic model of a computationally supported design synthesis process. Two correlated
models appeared in the literature: a generic framework [2] that proposed representation, generation,
evaluation and guidance as four basic steps which must be addressed inside a computationally driven
design synthesis process; and a performance-based framework [5] emerged for topological synthesis
proposing investigation, generation, evaluation and mediation as steps of a parametric based
computational synthesis. Although the two approaches differ slightly by the nomenclature, the content
of the proposed is almost the same. To reflect on the CDS methods and tools development, the
nomenclature according to the generic model of CDS [2] is adopted.
A compilation of the more recent and some of the older but very well known approaches to the CDS is
shown in Table 1. Table columns are arranged according to: theoretical fundaments undertaken,

design phase for which support is intended and according to four steps comprising the CDS [2]
(brackets denote fixed inputs). Rows 1-5 denote methods which differ significantly in the respect to
solution representation and generation: A-design applies agent based approach in order to create
meaningful solution concepts using a catalogue retrieved components [6], Hutcheson et. al. apply
heuristic based search using genetic algorithm (GA) for morphological matrix search [7], the Concept
generator [8] seeks out product function realisation possibilities using matrix algebra defined over
function-to-component (FCM) and dependency structure matrices (DSM), CAM [9] uses state based
search to create product architecture alternatives and SOPHY [10] aims at supporting designers by
generating concept sketch, thus depicting the working principle on which that concept is based.
Rows 6-10 (Table 1) include CDS knowledge-driven approaches that apply production rules to
formalise engineering knowledge of a particular domain. Solution alternatives are generated by
automating derivation process computationally. All of these approaches are aimed at provision of
computational support for the conceptual stages of product development. As seen from the Table 1,
the most common is the application of graph grammars. Graph grammars are defined as production
rule systems consisting of vocabulary and alphabet, and a set of rules for implementing graph
transformations. In most cases computational support is provided for product function structuring and
component configuration. Schmidt and Cagan developed GGREADA [11] which is an approach to
support of mechanism synthesis developed as a mixture of configuration and catalogue selection
design. With its predecessor the FFREADA, a function-to-form recursive annealing was applied to
string of symbols to generate hand drill designs, where as GGREADA extended to graph grammars to
generate concepts using components based on a Meccano® parts set. Siddiqque and Rosen apply
graph grammars to develop a Product Family Reasoning System (PFRS) which would help designers
in development of product platforms [12]. In their work two questions were addressed: how to
establish common platforms for a set of different products, and the opposite, how to specify the
product portfolio supported by the platform. First, the production rules were applied to generate a
variety of product function structures which were then mapped to components containing relationships
among functions and components. Answering how to specify the product portfolio supported by the
platform required grammar definition as an acceptance grammar thus parsing the product architectures
to see whether they fit in the language of the specific product family. Whereas HiCED [13] involves
hierarchical coevolutionary approach in order to simultaneously evolve functions and components by
combining genetic algorithms with graph grammar, BOOGGIE [14] developed according to function-
behaviour-structure (FBS) product model tries to make use of the available graph grammar
transformation tools and other open-source software packages in order to integrate them into a
framework for synthesis of mechatronic products. Currently the framework only aims at variants
generation without the optimisation support.
Rows 11-14 (Table 1.) contain the list of CDS methods intended for the embodiment design phase
support. In general these approaches are shape or spatial grammar based, what is again a type of graph
grammar transformation applied for topological synthesis. Schmidt et. al. developed a method for the
automated synthesis of mechanisms, for epicyclical gear trains in specific [15]. Graph grammars were
used to add vertices and loops to the initial start graph. With the interpretation of the resulting
structure by processing vertices and edge labels the desired gear transmission ratio was obtained.
Computational support of simulation driven microelectromechanical system (MEMS) synthesis was
presented by Bolognini et. al. [16] based on the CNS-Burst method. The method was developed as a
combination of Connected-Node System which is in fact a hypergraph based representation of MEMS
systems, and a multi-objective generate-and-test search algorithm denoted as BURST. As the
continuation of the previous work done by Starling and Shea for simulation driven synthesis [5]
founded on the FBS modeling approach, a simulation-driven method for gearboxes synthesis was
developed by Lin et. al. [17]. The component structure was represented using a virtual graph
consisting of gear pairs and shafts thus depicting a power flow inside a gear-box. The system topology
and geometry modification were derived by following a set of spatial grammar rules inside a simulated
annealing search process. Grammar rules where ranked according to the performance of designes they
created. Wu et. al. developed a systematic approach for automated support for design of mechatronic
dynamic systems based on bond graph formalisms [18]. It is a simulation driven approach which
requires as an input a conceptual definition of dynamic system to define a state space. For that
purpose, a conceptual dynamics CD graph is introduced representing the information about the
connections between components of the system.

Table 1. Overview of CDS methods and tools

T

p
F

s

O
rgan
stru
Beh

C
Stru

A
Plat

Rep
Invest

G
eneration

Evaluation
G

uid
M

edia

1
Ca

et. a

A-D
esign

x
Catalogue based design

Agent based/
H

euristics
M

ulti-objective, Pareto
TAB

learnin
2003

2
H

et. a

Co

Selecti

P

Be

x
M

orphological
chart

H
euristics

M
ulti-objective,

m
ultiple w

eighting factors

Evo
Bui

hyp

2006

3
Bry

et. a

Concept G
enerato

P

Be

(x)
x

FCM
Tree

M
atrix algebra

C

Com

Enum

erative
2006

4
W

yatt
CAM

x
G

raph
(

Elem

applie

Constraint based
Co

D

2009

5
Ri

et. a

SO
PH

Y
TTS

x
x

Schem
a (Ph

elem

Va

expres
autom

generatio

Causality
Enum

erative
2010

6
Sc

Cag

G
G

READ
A

P

Be

x
x

Fun

Co

G
raph

G
raph-gram

m
ar

Perfom
ace m

etrics em
beded inside rules

M

S

SA

1997

7
Si

Ros

PFRS
PC/PSPV

P

Be

(x)
x

x
Fun

G

raph
G

raph-gram
m

ar
Sub-graph

Acceptance
Enum

erative
1999

8
Sta

Shea

Pa

for

drive

D
e

P

Be

(x)
x

x
F-S G

raph
G

raph
Struc

 gram
m

ar

Sim
ulation dr

M
ulti-objec

Perfo

sim

ulation

H
y

search S

2005

9
Jin, Li

H
iCED

P

Be

x
x

Fu

G
P Tree/
Binary

G
raph-gram

m
ar

M
ulti-objective,

m
ultiple w

eighting factors

Evol
Bui

h

2007

1
H

el

et. a

BO
O

G M

synthe

P

Be

x
x

x
F-B-S
G

raph
G

raph-gram
m

ar
Com

pone

Sim
ulation D

r P

Enum

erative
2009

1
Sc

et. a

S

of M

x
Labeled graph

G
based r

iso

Pow
ertrain ra

on b

Enum

erative
2000

1
Bo

et. a

Com

sy

fo

x
CN

S
(H

ypergraph)
Ru

transfo

Sim
ulation dri

M
ulti-objec

Perfo

sim

ulation

CN

no

princip

2007

1
Lin et.

A

Synthe

x
G

raph, (Po

Spatial

-gram
m

ar
M

ulti-objective,
m

ultiple w
eighting factors

P

ru

2009

1
W

u at
B

D
y

x

x
Bond graph

A

sys

graph

Sim
ulation-dr

Perfo

sim
ulation

Evo
Bui

hyp

2008

M
ethod

Y
A

u
M

etho
De Th

Scope

4 FORMAL MODEL OF TECHNICAL PROCESS
Following the systemic reasoning, technical processes and technical products are most often modelled
as transformation systems [1] which can be both formally and visually represented as graphs. The
latter clarifies why the most of the early design computational support tend to utilize graph
transformations for solution generation. Thus, depending on the abstraction level and context of
respective early design stage, transformation system’s elements can differ, but the basic graph
representation is retained.
To model technical process formally it is necessary to introduce technical process related entities (TP
entities); operands (Od), effects (Eff) and operations (Op) namely, into a graph’s structure. Hence,
operations are mapped to graph’s nodes, where operands and effects are mapped to arcs thus creating
multidigraph labelled over vocabulary of TP entities set ΣG

Formal model of technical processes is defined as a labelled multidigraph G = (V, E, s, t, l

. Multigraphs are considered as non-simple
graphs in which multiple edges between vertices, i.e. nodes, are allowed but no loops are permitted. In
general, a multigraph G can be defined as an ordered pair (V, E), where V is a set of nodes and E a bag
of edges. If a direction is required to represent binary relation between the vertices, than edges are
replaced by directed edges or put succinctly by arcs.

E, lV) with
operands, operations and effects as ordered sextuple where V is a set of nodes and E is a bag of arcs, s
and t are mappings returning source and target for each edge, and lE are lV

Op1

Op2

Op3

TrS Output
(out)

 TrS Operators
(eff)

TrS Input
(in)

Od1

Od3

Od4

Od5

Od6

Od7

Eff1

 Transformation
system's (TrS) border

Od2

 mappings which assign
every directed edge from E to operand Od or effect Eff and every node from V to operation Op
respectively.

Figure 1. Example of technical process modelled with labelled multidigraph G

An arbitrary structure of technical process modelled as labelled multidigraph is shown in Figure 1.
Operands Od1,...,Od7 can be understood as operands of different types (classes), or as operands of the
same type but in varying states or both. These may be either the operands which transformation
directly satisfies the existent users’ needs, or the operands that emerge secondary as required or
generated by the transformation system. Operations are represented as graph nodes labelled as
Op1,...,Op3. Source and target nodes of transformation system’s inputs and outputs are represented
with TrS Input and TrS Output or simply as in and out labelled nodes. Likewise the source node of
effects is denoted as TrS Effects or simply as eff labelled node. Necessary effect is represented as Eff1
In order to suffice the purposes of technical process modelling the following must be met:

.

1. the existence of minimally one Op labelled node, an operation that is, alongside in, out and eff
labelled nodes, |V | ≥ 4,

2. graph G has to be well connected only in respect to the transformation of operands, meaning that
there must exist operation chain transforming Od’s including in and out labelled nodes,

3. the isolation of the eff labelled node is permitted, denoting that the necessary effects do not have
to be present at each and every decomposition step (concurs with 2.).

Labelled multidigraph based model of technical processes accepts TP entities as any type of process
related objects which may possess their own set of attributes. At the current method’s development
stage TP entities are reduced to being labels only.

5 FORMAL MODEL OF TECHNICAL PROCESS SYNTHESIS
Graph grammars are means to perform a rule-based transformation of graphs. The application of rule
first identifies a target structure, a sub-graph that is, inside a host graph, which has to be replaced by a
new sub-graph. As the result of deletion of the old and integration of the new sub-structure with the
remainder of original graph a transformed graph structure emerges.
Thus, in the respect of developing computational support for technical process synthesis applying a
sequence of rules implies carrying through a series of transformations necessary for the creation of
design solution obtaining the following [3]:
• structure of operand transformation process in technical processes corresponding to the operands’

initial and desired states,
• identification of necessary effects required by the technology applied, and
• recognition of secondary flows which can appear as the result of operands’ transformation.
Thus, a successive derivation of all possible combinations of rules creates a design search space
regarded as a formal language of technical processes for which the rules were defined for. The
resulting design solution can be understood in a linguistical sense as a syntactically correct expression
or a sentence composed of alphabet of formal language of technical processes.
Performing a local change to graph’s structure is performed under the instructions given by the
production rule p : L → R. In fact, the engineering knowledge about how to decompose sub-process
into set of interrelated operations is formalised within each of the productions. Interpretation and
application of production p is addressed with the following:
• the left hand side of the rule L - a sub-graph modelled as labelled multidigraph that will be

inserted in the host graph G (G is current decomposition step), L has only one Op node |L| = 4,
• the right hand side of the rule R - a sub-graph that will be inserted at desired place inside the

graph G,
• exactly which part of host graph’s structure will be replaced is defined by matching procedure

m(L), m : L → G which finds L in G,
• specification of how to reconnect R into the structure of G is defined by the transformation

algorithm and the connecting procedure ρ.
Instead of performing graph based search, the matching procedure m(L) is resolved by attaching a
token to each operation within rule p or host graph G. Same token assumes literally the same
mappings to TP entities. An example of the rule definition both using token based Backus-Naur
notation [19] and graph-grammar representations is given in Table 2 (in, out and eff labelled nodes
omitted for the sake of simplicity, principle operand transformation shown in bold):

Table 2. Rule definition example in token and graph-grammar representations

< TP > ::= < SubTP1 > < OP1 > (representing p : L → R)
< TP > (representing L)

TPOp1
1 Op2

1

< SubTP1 > < OP1 > (representing R)

Sub TP1 OP1

Eff1

Op1
1

Op2
1Op*

1

Op1
2 Op2

2

Transformation algorithm and connection procedure ρ are defined as following:
1. identify L in G,
2. subtract L from G,
3. identify interfaces as all of the dangling arcs that have lost source or target node as the result of

applying 2. and collect these within interface set intf1
4. delete all the edges which are mapped to the effects both from G and intf

,
1

5. delete in and out labelled nodes from R,
,

6. collect interfaces from R and put them in the interface set intf2
7. collect effect labelled edges form R and put them intf

,
3,

8. delete eff labelled node from R,
9. add R to G,
10. reconnect interfaces using matching of intf1 and intf2 with deletion of all the duplicates from

intf2, matching implies recognition as true if an edge from intf1 and edge from intf2 have the
same operand labelling, and that if the edge from intf1 has no source than the corresponding edge
from intf2

11. copy effects from intf
 must be deprived of target node (vice versa is also acceptable),

3
12. reconnect the reminder of the interfaces from intf

 to G,
2

The definition of rule p is completely performed by designer. It involves definition of TP entities and
their mappings to labelled multidigraph both for L and R. Designer defines a black-box technical
process formulation with operands in their initial and desired states thus reflecting existing market and
societal needs. As well, the constraints as an input to the search can be created. Technical process
synthesis is then performed according to matching procedure m, set of productions of type p : L → R
and transformation algorithm with connection procedure ρ. An example of technical process synthesis
depicted as derivation sequences both in token based notation and graph-grammar is shown in Figure
2. (in, out and eff labelled nodes omitted for the sake of simplicity):

 as completely new secondary flows emerging
from the input in or going out from the system towards out.

TPOd1' Od1''

SubTP1
Od1'

Od1'''
Op1

Od1''
Od2'

Eff1

Od2''

Op2
Od1'

Od1''''

Eff1

Op3Od3'

Od1'''

Eff2

Op1 Od2''

Od1''
Od2'

Od3''

System border

System border

System border

<TP>

<SubTP1> Op1

Op2 Op3 Op1

BNF Sentence

Input

Input

Input

Output

Output

Output

Effects

Effects

Effects
Figure 2. Derivations example of TP synthesis in BNF and in graph grammars

Reusing the secondary flow Od2’ as an output of Op3 in order to feed Op1 rather than importing the
Od2
In order to provide goal based search a grammatical evolution (GE) [20] was added to the technical
process synthesis method. Grammatical evolution is genetic algorithm based stochastic optimizer that
seeks out the rule application sequence that is able to produce optimal solution under the given
criteria. Since GE operate with token based BNF rules, it proved ideal as an addition to the method for
graph grammar based technical process synthesis.

’ from the outside of transformation system is the result of applying the connecting procedure ρ.

6 EXAMPLE
The purpose of the example is dual: to show the potential of the method for technical process synthesis
and to elaborate how the variation on technical process level can yield in different function structure of
technical system. The formulated task is a design of an automated assembly line that is able to deliver
stiffened steel panels. What designer needs to gain are insights about working principles on which the
transformation of operands is performed, as well as the necessary effects that need to be provided to
sustain the transformation. Within this example’s grammar (Figure 4. and Figure 5.), the process of
stiffened panel assembly is divided within three logical steps: step one is the positioning of steel plates
and their assembly into a steel panel, step two comprises of cutting of panel to desired dimensions and
then, possible surface cleaning and setting of the markings for placement of stiffeners. The final step
comprises of stiffener transport and its positioning. Step three is concluded with further distribution of
the welded panel. In order to exemplify differences on a technical system level emerging as the result

of technical process search, welding and riveting are considering as two alternatives for the creation of
stiffened panel. It is assumed that steel plates and stiffeners enter transformation in the state
appropriate for appliance of those two technologies including welding joints or holes required for
riveting. A black-box formulation of such process as it might be specified by designer, with operands
in their initial and a desired state is given in Figure 3. Goal based search is specified as a completely
automated welding process involving the least possible number of operations. Derivation stopping rule
is set to length of 100 steps.

Stiffened panel
ASSEMBLED

Plate

Plate Stiffened
panelStiffener

Figure 3. Stiffened panel assembly black-box process formulation

< spa > (0) ::= < assembled >< treated >< stiffened > < plateWeld > (0) ::= < plateSec >< plateWeld‘ >_plateRelease

< assembled > (0) ::= _PlatePos < plateWeld > < plateWeld > (1)

< assembled > (1) ::= _PlatePos < plateRivet > < plateWeld’ > (1) ::= < plateWeld >_panelTurn < plateWeld >

< plateRivet > (0):: = < plateSec >< plateRivet‘ >_plateRelease < plateWeld’ > (0) ::= _maw

Panel Panel
treated

Panel
stiffened

Panel
assembled

Plate

Plate
Stiffened

panel

Panel
(treated)

Stiffener

Plates
positioned

Plate

Plate

Plate
(positioned)

Plate
(positioned)

Plates
welded

Panel

Plates
riveted

Plates
positioned

Plate

Plate
Panel

Plate
(positioned)

Plate
(positioned)

Plates
secured

Plates
welded
(1 side)

Panel
(secured)

Plate
(positioned)

Plate
(positioned)

Plate
(secured)
Plate

(secured)

Panel
released

Panel

Plate
(positioned)

Plate
(positioned)

Plates
welded

Panel Panel
turned

Energy
(mech.)

Plate
(positioned)

Plate
(postioned)

Plates
welded

Panel

Plates
securedPlate

(positioned)

Plate
(positioned)

Plate
(secured)

Plate
(secured) Plates

riveted
(both sides acc.)

Panel
(secured)

Plates
released

Panel
Manual arc

welded

Energy (electric.)

Plate
(secured)

Reg.

Plate
(secured)

Electrode
(coated)

Panel
(secured)

Fumes

Electrom.
emmisons

(light)

Submerged
arc welded

Energy
(electrical)

Plate (sec.) Panel (sec.)

Reg.

Ceramic
slab

Granulate
flux

Free granulatePlate (sec.)

Ceramic slab

Panel,
granulate
separated

Energy
(pneumatic)

Wire Granulate

Panel (sec.)

Plate (secured)
Plate (secured)

Rivet
secured

Human
force

Plate (sec.)
Plate (sec.)

Rivet (sec.)
Impact
riveting

Riveting
support Human

Force
(Reg.)

Panel (sec.)

Riveting
support

Pneumatic
hammer

Riveting
supp.

Plate (secured)
Plate (secured)

Rivet
positioned

Rivet
(hot) Human

force

Rivet (pos.)
Pneumatic
hammerGripping

tool
Gripping

tool

Rivet
secured

Energy
(Mech.)

Plate (sec.)
Plate (sec.)

Rivet (sec.)
Impact
riveting

Energy
(Mech.)

Panel (sec.)Plate (secured)
Plate (secured)

Plate (secured)
Plate (secured)

Rivet
positioned

Rivet
(hot) Human

force

Rivet (pos.)

Gripping
tool

Gripping
tool

Plates
secured

Plate
(positioned)

Plate
(positioned)

Plate
(secured)

Plate
(secured)

Energy
(pneumatic)

Plates
secured

Plate
(positioned)

Plate
(positioned)

Plate
(secured)

Plate
(secured)

Energy
(electromag.)

Plates
secured

Plate
(positioned)

Plate
(positioned)

Plate
(secured)

Plate
(secured)

Energy
(hydraulic)

Rivet
secured

Energy
(Mech.)

Plate (sec.)
Plate (sec.)

Rivet (sec.)
Impact
riveting

Energy
(Mech.)

Panel (sec.)Plate (secured)
Plate (secured)

Plate
(secured)

Plate
(secured) Rivet

positioned
Rivet
(hot) Energy

(Mech.)

Rivet (pos.)

< plateRivet’ > (0) ∷=_rivetPos' _rivetSec' _impactRiv' < plateSec > (0) ::= _plateSec'

< plateRivet’ > (1) ∷=_rivetPos' _rivetSec'' _impactRiv'' < plateSec > (1) ::= _plateSec''

< plateRivet’ > (2) ∷=_rivetPos'' _rivetSec'' _impactRiv'' < plateSec > (2) ::= _plateSec'''

Figure 4. Graph grammar of stiffened panel assembly (Part I)

< treated > (0) ∷=_panelCut < dirtRemoved >_stfPos < stiffened > (0) ∷=_panelPos < stfWeld >

< dirtRemoved > (0) ::= _blast_abrSeparated' < stiffened > (1) ∷=_panelPos < stfRivet >

< dirtRemoved > (1) ::= _brush < stfWeld> (0) ::= <stfSec > _stfSaw _abrSeparated''

Panel
cutting

Energy
(heat.)

Panel Panel Dirt
removed

Stiffener
position located

Plasma
marker

Panel

Plasma
markerReg.

Panel
(prepared)

Particles
(waste)

Panel
brushed

Panel

Particles
(waste)

Panel

Human
force

Brush
Brush

Panel
blasted

PanelPanel

Energy
(pneumatic)

Abrasive
particles

Particles
(waste)

Panel,
particles

separatedParticles
(waste)

Abrasive
particles

Abrasive
particles

Energy
(pneumatic)

Panel

Panel
(positioned) Stiffener

welded
Panel

positioned
Plate

(treated)
Stiffened

panel

Stiffener

Panel
(positioned) Stiffener

riveted
Panel

positioned
Plate

(treated)
Stiffened

panel

Stiffener

Stiffener
secured

Energy

Submerged
Arc welded

Panel
(positioned)

Stiffener

Panel
Siffener (sec.)

Wire

Granulate
flux

Panel,
Granulate
separated

Stiffened
Panel

Free garnulate

Stiffened
panel

Granulate
flux

Energy
(pneumatic)Energy

(pneumatic)

Reg.

< stfRivet > (0) ::= < stfSec >_rivetPos''' _rivetSec'''_impactRiv'''

< stfRivet > (1) ::= < stfSec >_rivetPos''' _rivetSec''''_impactRiv''''

< stfRivet > (2) ::= < stfSec >_rivetPos'''' _rivetSec''''_impactRiv''''

< stfSec > (0) ::= _stfSec' < stfSec > (1) ::= _stfSec''

Stiffener
secured

Energy

Panel
(positioned)

Stiffener

Panel
Siffener (sec.) Rivet

secured

Human
force

Impact
riveting

Riveting
support Human

Force
(Reg.)

Stiffened panel

Riveting
support

Pneumatic
hammer

Riveting
supp.

Rivet
positioned

Rivet
(hot) Human

force

Rivet (pos.)
Pneumatic
hammer

Gripping
tool

Gripping
tool

Panel
Siffener (sec.)

Panel
Siffener (sec.)
Rivet (sec.)

Rivet
secured

Energy
(Mech.)

Rivet (sec.)
Impact
riveting

Energy
(Mech.)

Stiffened panelRivet
positioned

Rivet
(hot) Human

force

Rivet (pos.)

Gripping
tool

Gripping
tool

Stiffener
secured

Energy

Panel
(positioned)

Stiffener

Panel
Siffener (sec.)

Panel
Siffener (sec.)

Panel
Siffener (sec.)

Rivet
secured

Energy
(Mech.)

Rivet (sec.)
Impact
riveting

Energy
(Mech.)

Stiffened panelRivet
positioned

Rivet
(hot) Energy

(Mech.)

Rivet (pos.)

Stiffener
secured

Energy

Panel
(positioned)

Stiffener

Panel
Siffener (sec.)

Panel
Siffener (sec.)

Panel
Siffener (sec.)

Stiffener
secured

Energy
(hydraulic)

Panel
(positioned)

Stiffener

Panel
Siffener

(secured)

Manual arc
prewelded

Energy
(electrical)

Panel
(positioned)

Stiffener

Panel
Siffener (secured)

Human
Force (Reg.)

Fumes

Electrom.
emmisons

(light)

Electrode
(coated)

Figure 5. Graph grammar of stiffened panel assembly (Part II)

6 DISCUSSION
Number of technical process variants that can be created using grammar as defined in Figure 4 and
Figure 5 equals 600 not taking into an account 4 branches involving < plateWeld > (1) (see Figure 5)
for which the introduction of stopping rule was necessary. If only welding alone is considered, than
168 variants exists (Figure 6), only riveting yields in 108 variants. Combination of technological
principles as welding of plates with riveting and riveting of plates with welding of stiffeners are the
rest of transformation variants. It is important to stress out that the mechanisms on which GE is based,
a combination of genetic algorithm and formal grammar, enable the creation only of the meaningful
alternatives. Figure 6 depicts welding branch productions sequences only (left hand sides of
productions shown, search goal solution is gray-shaded).
An example of how a variation on technical processes (TP) level may yield in different technical
systems is shown in Figure 7. Because of the lengthy results involving multitude of operations, only
excerpts from two technical variants are being depicted; one with fully automated panel riveting and
the other with technical process variant involving fully automated panel welding (as gray-shaded

derivation sequence in Figure 6). Based on the required effects one or more technical systems could be
designed in order to sustain technical process.

S

<a
ss

em
bl

ed
>(

0)

<s
pa

>(
0)

<p
la

te
W

el
d>

(0
)

<t
re

at
ed

>(
0)

<s
tif

fe
ne

d>
(0

)

<a
ss

em
bl

ed
>(

1)

…

<s
tif

fe
ne

d>
(1

)

R
iv

et
in

g
br

an
ch

…

R
iv

et
in

g
br

an
ch

<p
la

te
W

el
d>

(1
)

<d
irt

R
em

ov
ed

>(
0)

<d

irt
R

em
ov

ed
W

el
d>

(1
)

<s
tfW

el
d>

(0
)

<p
la

te
W

el
d'

>(
0)

<p

la
te

W
el

d'
>(

1)

<p
la

te
Se

c>
(0

)
<p

la
te

S
ec

>(
1)

 <
pl

at
eS

ec
>(

2)

<s
tfS

ec
>(

0)

<S
tfS

ec
>(

1)

S
am

e
po

ss
ib

le

pr
od

uc
tio

n
se

qu
en

ce
s

as
 o

n
th

e
le

ft
ha

nd
 s

id
e

S
am

e
po

ss
ib

le

pr
od

uc
tio

n
se

qu
en

ce
s

as
 o

n
th

e
le

ft
ha

nd
 s

id
e

S
am

e
po

ss
ib

le

pr
od

uc
tio

n
se

qu
en

ce
s

as

on
 th

e
rig

ht
 h

an
d

si
de

<d
irt

R
em

ov
ed

>(
0)

<d

irt
R

em
ov

ed
>(

1)

<s
tfW

el
d>

(0
)

<p
la

te
W

el
d>

(0
)

<p
la

te
W

el
d>

(1
)

N
ot

 fe
as

ib
le

M
ul

tip
le

 p
an

el
tu

rn
in

g

<p
la

te
W

el
d>

(0
)

<p
la

te
W

el
d>

(1
)

N
ot

 fe
as

ib
le

M
ul

tip
le

 p
an

el
tu

rn
in

g

<s
tfS

ec
>(

0)

<S
tfS

ec
>(

1)

<p
la

te
W

el
d´

>(
0)

<p

la
te

W
el

d´
>(

1)

<p
la

te
S

ec
>(

0)

<p
la

te
S

ec
>(

1)

<p
la

te
S

ec
>(

2)

<p
la

te
W

el
d´

>(
0)

<p

la
te

W
el

d´
>(

1)

<p
la

te
S

ec
>(

1)

<p
la

te
S

ec
>(

2)

<p
la

te
S

ec
>(

0)

S
am

e
po

ss
ib

le
 p

ro
du

ct
io

n
se

qu
en

ce
s

as
 o

n
th

e
le

ft
ha

nd
 s

id
e

S
am

e
po

ss
ib

le

pr
od

uc
tio

n
se

qu
en

ce
s

as
 o

n
th

e
le

ft
ha

nd
 s

id
e

S
am

e
po

ss
ib

le

pr
od

uc
tio

n
se

qu
en

ce
s

as
 fo

r
<d

irt
R

em
ov

ed
>

(1
)

Figure 6. Welding branch productions sequences (search goal solution is gray-shaded)

This is the reason why the riveting based process is depicted with two technical systems instead of
one. Technical system for riveting must be capable of provisioning the impact force, thus specifying
one of the system’s functions. Consequently, the technical system for welding must be capable of
providing an electrical arc to be able to perform join of two plates into a panel. These two functions
are direct consequences of different technological principles on which the operand transformation
variants were founded. There is no other way in which these two technical system’s functions could
have emerged. The same reasoning holds for securing of rivets and removal of granulate. Moreover,
the necessary output flows of technical systems, like rivets or welding wire for instance, are also the
result of different technical process that needs to be supported (assuming that inputs and secondary
outputs of technical systems are not the same).

P
an

el

st
iff

en
ed

S
tif

fe
ne

d
pa

ne
l

A
S

S
E

M
B

LY

P
la

te
P

la
te

S
tif

fe
ne

d
pa

ne
l

S
tif

fe
ne

r

P
an

el
P

an
el

tre
at

ed
P

an
el

st
iff

en
ed

P
an

el

as
se

m
bl

ed

P
la

te
P

la
te

S
tif

fe
ne

d
pa

ne
l

P
an

el
(tr

ea
te

d)

S
tif

fe
ne

r

B
la

ck
-b

ox

m
od

el
 o

f t
ec

hn
ic

al
 p

ro
ce

ss

Σ
O

pe
ra

nd
 in

S
ta

te
 1

O
d1

Σ
O

pe
ra

nd
 in

S
ta

te
 2

O
d2

…
..

P
an

el
(s

ec
.)

P
an

el

tre
at

ed

R
iv

et
se

cu
re

d

E
ne

rg
y

(M
ec

h.
)

P
la

te
 (s

ec
.)

P
la

te
 (s

ec
.)

R
iv

et
 (s

ec
.)

Im
pa

ct
riv

et
in

g
P

la
te

 (s
ec

ur
ed

)
P

la
te

 (s
ec

ur
ed

)
P

la
te

(s
ec

.)

P
la

te
(s

ec
.)

R
iv

et
po

si
tio

ne
d

R
iv

et
(h

ot
)

R
iv

et
 (p

os
.)

S
tif

fe
ne

d
pa

ne
l

S
ec

ur
in

g

P
an

el
(tr

ea
t.)

P
la

te

P
la

te

E
ne

rg
y

(M
ec

h.
)

E
ne

rg
y

(M
ec

h.
)

Σ
In

pu
ts

E
n.

, M
t.,

 S
g. P
ro

vi
de

fo
rc

e

Fu
1

S
ec

ur
e

riv
et

Σ
E

ffe
ct

s

Σ
S

ec
.

O
ut

pu
ts

E
n.

, M
at

.,
In

f.

E
ne

rg
y

(P
ne

um
at

ic
.)

E
ne

rg
y

(E
le

ct
ric

al
.)

TS
 fo

r s
ub

m
er

ge
d

ar
c

w
el

di
ng

Σ
In

pu
ts

E
n.

, M
t.,

 S
g.

G
en

er
at

e
ar

c

Σ
E

ffe
ct

s

Σ
S

ec
.

O
ut

pu
ts

E
n.

, M
at

.,
In

f.

Te
ch

ni
ca

l p
ro

ce
ss

E
ff 1

E
ff 2

Te
ch

ni
ca

l p
ro

ce
ss

P
an

el

P
an

el

re
le

as
e

S
ub

m
er

ge
d

ar
c

w
el

de
d

P
la

te
 (s

ec
.)

P
an

el
 (s

ec
.)

R
eg

.

C
er

am
ic

sl
ab

G
ra

nu
la

te
 fl

ux

Fr
ee

 g
ra

nu
la

te
P

la
te

 (s
ec

.)

C
er

am
ic

 s
la

b

P
an

el
,

gr
an

ul
at

e
se

pa
ra

te
d

W
ire

G
ra

nu
la

te

P
an

el
 (s

ec
.)

P
la

te
(p

os
.)

P
la

te
(p

os
.)

P
os

iti
on

in
g

Σ
Te

ch
ni

ca
l

m
ea

ns

Σ
Li

vi
ng

 th
in

gs
hu

m
an

s

S
ec

ur
in

g

P
la

te

P
la

te
P

la
te

(p
os

.)

P
la

te
(p

os
.)

P
os

iti
on

in
g

P
an

el
st

iff
en

ed
P

an
el

tre

at
ed

S
tif

fe
ne

d
pa

ne
l

P
an

el
(tr

ea
t.)

P
an

el

P
an

el

re
le

as
eΣ

Te
ch

ni
ca

l
m

ea
ns

Σ
Li

vi
ng

 th
in

gs
hu

m
an

s

R
em

ov
e

gr
an

ul
at

e

Fu
1

Fu
2

Fu
3

Fu
n

E
ff 1

Σ
E

ff
R

eg
.,

W
ire

, G
ra

n.
,

C
er

am
ic

 s
la

b
E

ff 3

Fu
2

Fu
n

Te
ch

ni
ca

l
S

ys
te

m
 fo

r r
iv

et

po
si

tio
ni

ng

R
iv

et
 (h

ot
)

In
pu

t p
ro

vi
de

d
by

 T
S

 fo
r s

ub
m

er
ge

d
ar

c
w

el
di

ng
In

pu
t p

ro
vi

de
d

by
 T

S
 fo

r r
iv

et
 p

os
iti

on
in

gTS
 fo

r a
ut

om
at

ed
 ri

ve
tin

g

Fi
rs

t d
ec

om
po

st
io

n
st

ep

TS
O

pe
ra

to
r

TS
O

pe
ra

to
r

P
la

te
 ri

ve
tin

g
P

la
te

 w
el

di
ng

TP
 v

ar
ia

nt
 in

vo
lv

in
g

fu
lly

 a
ut

om
at

ed

pl
at

e
riv

et
in

g
TP

 v
ar

ia
nt

 in
vo

lv
in

g
fu

lly
 a

ut
om

at
ed

su

bm
er

ge
d

ar
c

w
el

di
ng

Σ
E

ffe
ct

s

Figure 7. An example of how a variation on TP level yields in different technical systems

7 CONCLUSION
For the creation of computational support for the establishment of technical process synthesis formal
models of technical process and technical process synthesis were presented. As shown in Table 1 the
highest point of abstraction from which current approaches start is the functional level not recognizing
technical processes at all. Further consideration of technical system at lower levels of abstraction
cannot add new effects since they would redefine what a technical system should do within a

transformation system, and the only other way to accomplish that change is to affect the technical
process inside where the main operand transformation is realized. As a proof an example involving
stiffened panel assembly was shown.

REFERENCES
[1] Hubka V., Andreasen M.M., Eder E.W. Practical Studies in Systematic Design, 1998

(Butterworth & Co., London).
[2] Cagan, J., Campbell M.I., Finger S., Tomiyama T. A Framework for Computational design

synthesis: Model and Applications, Journal of Computing and Information Science, 2005.
[3] Hubka V. and Eder W.E. Engineering Design: General Procedural Model of engineering Design,

1992. (Springer-Verlag, Berlin, Heidelberg).
[4] Hubka V. and Eder W.E. Theory of Technical Systems and engineering design synthesis,

Chakrabarti A. (Ed.), 2002, (Springer-Verlag, London).
[5] Shea K. and Starling A.C. From Discrete Structures to Mechanical Systems: A Framework for

Creating Performance-Based Parametric Synthesis Tools, American Association of Artificial
Intelligence-Technical Report, 2003.

[6] Campbell M., Cagan J., Kotovsky K. A-Design: Theory and Implementation of an Adaptive,
Agent based Method of Conceptual design, Artificial Intelligence in Design ’98, 1998, Kluwer
Academic Publishers, Netherlands.

[7] Hutcheson R.S., Jordan R.L., Stone R.B. Application of a Genetic Algorithm To Concept Variant
Selection, 2006, In Proceedings of the ASME-DETC.

[8] Bryant C.R., Stone R.B., McAdams D.A., Kurtoglu T., Campbell M.I. Concept Generation from
the Functional Basis of Design, 2005, In the Proceedings of the ICED05.

[9] Wyatt D.F., Wynn D.C., Clarkson P.J. A Computational Method To Support Product
Architecture Design, 2009, In the Proceedings of the ASME-IMECE.

[10] Rihtaršić J., Žavbi R., Duhovnik J. Sophy – Tool for Structural Synthesis of Conceptual
Technical Systems, 2010, In the Proceedings of DESIGN 2010, Dubrovnik, Croatia.

[11] Schmidt L.C. and Cagan J. GGREADA: A Graph Grammar-Based Machine Design Algorithm,
Research in Engineering Design, 1997, Vol. 9, pp. 195-213.

[12] Siddique, Z. and Rosen D.W. Product Platform Design: A Graph Grammar Approach, 1999,
DETC99/DTM-8762, ASME.

[13] Jin Y. and Li W. Design Concept Generation: A Hierarchical Coevolutionary Approach, Journal
of Mechanical Design, 2007, Vol. 129, pp. 1012-1022.

[14] Helms B. and Shea K. Object-Oriented Concepts for Computational design synthesis, 2010, In
the Proceedings of DESIGN 2010, Dubrovnik, Croatia.

[15] Schmidt L.C., Shetty H., Chase S.C. A Graph Grammar Approach for Structure Synthesis of
Mechanisms, ASME - Journal of Mechanical Design, 2000, Vol. 122, pp. 371-376.

[16] Bolognini F., Seshia A.A., Shea K. Exploring the Application of a Multi-domain Simulation-
based Computational Synthesis method in MEMS Designs, 2007, ICED’07, Paris, France.

[17] Lin Y., Shea K, Johnson A., Coultate J., Pears J. A Method and Software Tool for Automated
Gearbox Synthesis, 2009, ASME, IDETC/CIE.

[18] Wu Z., Campbell M.I., Fernandez B.R. Bond Graph Based Automated Modelling for Computer-
Aided Design of Dynamic Systems, Journal of Mechanical Design, 2008, Vol. 130, ASME.

[19] Naur P. Revised report on the algorithmic language ALGOL 60, 1963, ACM, 6(1), pp. 1-17.
[20] O'Neill M. and Ryan C. Grammatical evolution, IEEE Transactions on Evolutionary

Computation, 2001, Vol. 5 (4), pp. 349-358.

Contact: Dr. Tino Stanković, Dipl.‐Ing., Ph.D. ME
University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
Ivana Lucica 5, Zagreb, Croatia
Tel: +385 1 6168 432, Fax +385 1 6168 286
Email: tino.stankovic@fsb.hr, URL: www.cadlab.fsb.hr

Tino is postdoctoral researcher at the Department of Design at the University of Zagreb Faculty of
Mechanical Engineering and Naval Architecture. He is interested in computational design synthesis,
formal modelling, multi-objective optimization and evolutionary computation.

