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ABSTRACT 
This paper considers the implications of introducing the computational method for technical process 
synthesis founded on the Theory of Technical Systems as an addition to the current Computational 
Design Synthesis (CDS) methods and tools. A computational method containing formal model of 
technical process based on labelled multidigraph and formal model of technical process synthesis that 
is based on labelled multidigraph graph-grammar transformations will be presented. The result of 
applying transformation to the multigraph is generation of variants showing how technical process 
could be accomplished. 
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1 INTRODUCTION 
Efforts in the research and development of computational support for conceptual design are motivated 
by a notion that such support could provide designers with novel or even creative concept alternatives 
as the result of computationally augmented solution space search. Generation, evaluation and selection 
of a concept variant are processes based on designers knowledge, experience in the field and 
information retrieved from the external sources [1]. If a computational system as an aid to design 
process can provide concept alternatives then designer being aware of these can make well established 
decisions in order to design new product more efficient. Computationally generated concept 
alternatives can thus serve as valuable starting points to design solution development. The field of 
Computational Design Synthesis (CDS) [2] brings together advanced computational algorithms with 
existing design theory and methodology in order to provide means for computational creation of 
design solution alternatives. Going beyond just dealing with multi-objective optimisation on well 
established solution concepts, the CDS considers design synthesis as its focal point thus being more or 
less aimed at early design phases where the synthesis is the most intensive. Most common [2], CDS is 
called for with a solution creation requiring generating and testing alternatives in numbers too large 
for a designer to seek out. 
Work that is presented within this paper aims at the introduction of computational support intended for 
the very beginning of the computational design phase where according to the Theory of Technical 
Systems (TTS) [3] a technical process needs to be established. This work is thus coherent with the 
efforts made within the CDS research community as to provide better search and solution generation 
possibilities to designers by developing computational support for the early design stages [3]. 
However, what differs in respect to the current CDS efforts is the selection of the TTS as theoretic 
fundament thus recognizing the technical process synthesis as a requirement if the function of 
technical system that has to be designed is considered as the consequence of its participation within 
technical process. Moreover, according to the TTS, a technical processes synthesis is understood as a 
key element if an innovative design of new product is to be accomplished. As Section 3 of this paper 
will show, due to different methodology adopted the CDS methods in general do not consider 
technical process level, thus specifying the function of the product as an input to the solution 
generation what imposes limitations to the search space. Although none of the current CDS methods 
presents a complete framework adopting all of the conceptual design stages, the introduction of the 
technical process synthesis will prove beneficial when such frameworks will appear regardless to the 
methodology applied. 
This work will present a computational method containing formal model of technical process (TP) 
based on labelled multidigraph and formal model of technical process synthesis that is based on graph 



grammar transformations. The assumption is that if engineering knowledge about technical processes, 
technological principles and the necessary effects is formalized and embedded within set of graph 
grammar productions than the variants of operand transformation can be created. The result of 
applying productions is decomposition of technical process from the initial black-box form to the 
establishment of chain of operations with operands in their initial, intermediate and desired states 
supported by the necessary effects. The paper will include an example showing method’s application 
and the resulting implications to the definition of technical system’s function. Conclusion will close 
this paper. 

2 THEORETICAL BACKGROUND 
According to the Theory of Technical Systems [3] technical evolution, design and product 
development are explained as a response to those needs and requirements within human society for 
which, to be satisfied, an assistance of technical means was necessary. Such teleological view implies 
as a starting point to a development of a new product a definition of technical process as a process in 
which necessary effects must be delivered by technical product and human beings in order to enable 
purposeful transformation of operands. Following the systemic reasoning [3], technical process is 
modelled as transformation system composed of series of operations interrelated with operand flows 
and supported by the necessary effects. Changing of state of operands in the desired manner can be 
accomplished in different ways in respect to the various technological principles which prescribe and 
establish a sequence of necessary operations supported with effects that must be performed within 
transformation processes.  
Based on designer’s experience, the knowledge of existing technologies (technological principles) and 
on the understanding of the task, a decomposition of technical process is performed in order to gain 
insights and to reveal details about the transformation process. The consequence of decomposition 
performed is a conception of information necessary for design of technical system [1], [3]. In the 
decomposition process designers must consider different duties that human operator and technical 
system have to fulfil in order to enable transformation of operands. By reasoning how and with what 
to perform a transformation in order to achieve a desired state of operands designer establishes 
technical process. In the end, it is up to designer’s knowledge to choose the most suitable 
technological principle by which the transformation will be accomplished.  
Design theory states [1], [3], [4] that technical processes are established as sequences of operations 
based on different technological principles. Depending on the complexity of the given tasks, the 
technical process might be supported by several technical systems of different levels of complexity. 
The interplay between human operators and technical systems, i.e. the product being designed, results 
with the provision of the necessary effects. Possibilities of product realisation are therefore understood 
in respect to the extents of technical system’s participation in the transformation. Determination of 
these duties as an ability to deliver necessary effects thus defines a technical system’s function as an 
entry point by which the organ structure of a technical system will be established [2]. Implications and 
importance of the consideration of technical processes in respect to whole of the conceptual design 
was thus one of the prime motivators why to research computational means that could aid designers at 
that particular stage of design process. Taking into account how a technical system would participate 
within technical process is clearly at least equally important to the other design phases and since it is 
the first stage it may contribute the overall success of design process by the most.  

3 RELATED WORK 
To consolidate various approaches, methods and tools that emerged over the years, efforts were made 
to establish a generic model of a computationally supported design synthesis process. Two correlated 
models appeared in the literature: a generic framework [2] that proposed representation, generation, 
evaluation and guidance as four basic steps which must be addressed inside a computationally driven 
design synthesis process; and a performance-based framework [5] emerged for topological synthesis 
proposing investigation, generation, evaluation and mediation as steps of a parametric based 
computational synthesis. Although the two approaches differ slightly by the nomenclature, the content 
of the proposed is almost the same. To reflect on the CDS methods and tools development, the 
nomenclature according to the generic model of CDS [2] is adopted. 
A compilation of the more recent and some of the older but very well known approaches to the CDS is 
shown in Table 1. Table columns are arranged according to: theoretical fundaments undertaken, 



design phase for which support is intended and according to four steps comprising the CDS [2] 
(brackets denote fixed inputs). Rows 1-5 denote methods which differ significantly in the respect to 
solution representation and generation: A-design applies agent based approach in order to create 
meaningful solution concepts using a catalogue retrieved components [6], Hutcheson et. al. apply 
heuristic based search using genetic algorithm (GA) for morphological matrix search [7], the Concept 
generator [8] seeks out product function realisation possibilities using matrix algebra defined over 
function-to-component (FCM) and dependency structure  matrices (DSM), CAM [9] uses state based 
search to create product architecture alternatives and SOPHY [10] aims at supporting designers by 
generating concept sketch, thus depicting the working principle on which that concept is based.  
Rows 6-10 (Table 1) include CDS knowledge-driven approaches that apply production rules to 
formalise engineering knowledge of a particular domain. Solution alternatives are generated by 
automating derivation process computationally. All of these approaches are aimed at provision of 
computational support for the conceptual stages of product development. As seen from the Table 1, 
the most common is the application of graph grammars. Graph grammars are defined as production 
rule systems consisting of vocabulary and alphabet, and a set of rules for implementing graph 
transformations. In most cases computational support is provided for product function structuring and 
component configuration. Schmidt and Cagan developed GGREADA [11] which is an approach to 
support of mechanism synthesis developed as a mixture of configuration and catalogue selection 
design. With its predecessor the FFREADA, a function-to-form recursive annealing was applied to 
string of symbols to generate hand drill designs, where as GGREADA extended to graph grammars to 
generate concepts using components based on a Meccano® parts set. Siddiqque and Rosen apply 
graph grammars to develop a Product Family Reasoning System (PFRS) which would help designers 
in development of product platforms [12]. In their work two questions were addressed: how to 
establish common platforms for a set of different products, and the opposite, how to specify the 
product portfolio supported by the platform. First, the production rules were applied to generate a 
variety of product function structures which were then mapped to components containing relationships 
among functions and components. Answering how to specify the product portfolio supported by the 
platform required grammar definition as an acceptance grammar thus parsing the product architectures 
to see whether they fit in the language of the specific product family. Whereas HiCED [13] involves 
hierarchical coevolutionary approach in order to simultaneously evolve functions and components by 
combining genetic algorithms with graph grammar, BOOGGIE [14] developed according to function-
behaviour-structure (FBS) product model tries to make use of the available graph grammar 
transformation tools and other open-source software packages in order to integrate them into a 
framework for synthesis of mechatronic products. Currently the framework only aims at variants 
generation without the optimisation support. 
Rows 11-14 (Table 1.) contain the list of CDS methods intended for the embodiment design phase 
support. In general these approaches are shape or spatial grammar based, what is again a type of graph 
grammar transformation applied for topological synthesis. Schmidt et. al. developed a method for the 
automated synthesis of mechanisms, for epicyclical gear trains in specific [15]. Graph grammars were 
used to add vertices and loops to the initial start graph. With the interpretation of the resulting 
structure by processing vertices and edge labels the desired gear transmission ratio was obtained. 
Computational support of simulation driven microelectromechanical system (MEMS) synthesis was 
presented by Bolognini et. al. [16] based on the CNS-Burst method. The method was developed as a 
combination of Connected-Node System which is in fact a hypergraph based representation of MEMS 
systems, and a multi-objective generate-and-test search algorithm denoted as BURST. As the 
continuation of the previous work done by Starling and Shea for simulation driven synthesis [5] 
founded on the FBS modeling approach, a simulation-driven method for gearboxes synthesis was 
developed by Lin et. al. [17]. The component structure was represented using a virtual graph 
consisting of gear pairs and shafts thus depicting a power flow inside a gear-box. The system topology 
and geometry modification were derived by following a set of spatial grammar rules inside a simulated 
annealing search process. Grammar rules where ranked according to the performance of designes they 
created. Wu et. al. developed a systematic approach for automated support for design of mechatronic 
dynamic systems based on bond graph formalisms [18]. It is a simulation driven approach which 
requires as an input a conceptual definition of dynamic system to define a state space. For that 
purpose, a conceptual dynamics CD graph is introduced representing the information about the 
connections between components of the system. 



Table 1. Overview of CDS methods and tools 
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4 FORMAL MODEL OF TECHNICAL PROCESS 
Following the systemic reasoning, technical processes and technical products are most often modelled 
as transformation systems [1] which can be both formally and visually represented as graphs. The 
latter clarifies why the most of the early design computational support tend to utilize graph 
transformations for solution generation. Thus, depending on the abstraction level and context of 
respective early design stage, transformation system’s elements can differ, but the basic graph 
representation is retained.  
To model technical process formally it is necessary to introduce technical process related entities (TP 
entities); operands (Od), effects (Eff) and operations (Op) namely, into a graph’s structure. Hence, 
operations are mapped to graph’s nodes, where operands and effects are mapped to arcs thus creating 
multidigraph labelled over vocabulary of TP entities set ΣG

Formal model of technical processes is defined as a labelled multidigraph G = (V, E, s, t, l

. Multigraphs are considered as non-simple 
graphs in which multiple edges between vertices, i.e. nodes, are allowed but no loops are permitted. In 
general, a multigraph G can be defined as an ordered pair (V, E), where V is a set of nodes and E a bag 
of edges. If a direction is required to represent binary relation between the vertices, than edges are 
replaced by directed edges or put succinctly by arcs. 

E, lV) with 
operands, operations and effects as ordered sextuple where V is a set of nodes and E is a bag of arcs, s 
and t are mappings returning source and target for each edge, and lE are lV

Op1

Op2

Op3

TrS Output
(out)

 TrS Operators
(eff) 

TrS Input
(in)

Od1

Od3

Od4

Od5

Od6

Od7

Eff1

 Transformation 
system's (TrS) border

Od2

 mappings which assign 
every directed edge from E to operand Od or effect Eff and every node from V to operation Op 
respectively.  

 
Figure 1. Example of technical process modelled with labelled multidigraph G 

An arbitrary structure of technical process modelled as labelled multidigraph is shown in Figure 1. 
Operands Od1,...,Od7 can be understood as operands of different types (classes), or as operands of the 
same type but in varying states or both. These may be either the operands which transformation 
directly satisfies the existent users’ needs, or the operands that emerge secondary as required or 
generated by the transformation system. Operations are represented as graph nodes labelled as 
Op1,...,Op3. Source and target nodes of transformation system’s inputs and outputs are represented 
with TrS Input and TrS Output or simply as in and out labelled nodes. Likewise the source node of 
effects is denoted as TrS Effects or simply as eff labelled node. Necessary effect is represented as Eff1
In order to suffice the purposes of technical process modelling the following must be met: 

. 

1. the existence of minimally one Op labelled node, an operation that is, alongside in, out and eff 
labelled nodes, |V | ≥ 4, 

2. graph G has to be well connected only in respect to the transformation of operands, meaning that 
there must exist operation chain transforming Od’s including in and out labelled nodes, 

3. the isolation of the eff labelled node is permitted, denoting that the necessary effects do not have 
to be present at each and every decomposition step (concurs with 2.). 

Labelled multidigraph based model of technical processes accepts TP entities as any type of process 
related objects which may possess their own set of attributes. At the current method’s development 
stage TP entities are reduced to being labels only. 



5 FORMAL MODEL OF TECHNICAL PROCESS SYNTHESIS 
Graph grammars are means to perform a rule-based transformation of graphs. The application of rule 
first identifies a target structure, a sub-graph that is, inside a host graph, which has to be replaced by a 
new sub-graph. As the result of deletion of the old and integration of the new sub-structure with the 
remainder of original graph a transformed graph structure emerges. 
Thus, in the respect of developing computational support for technical process synthesis applying a 
sequence of rules implies carrying through a series of transformations necessary for the creation of 
design solution obtaining the following [3]: 
• structure of operand transformation process in technical processes corresponding to the operands’ 

initial and desired states, 
• identification of necessary effects required by the technology applied, and 
• recognition of secondary flows which can appear as the result of operands’ transformation. 
Thus, a successive derivation of all possible combinations of rules creates a design search space 
regarded as a formal language of technical processes for which the rules were defined for. The 
resulting design solution can be understood in a linguistical sense as a syntactically correct expression 
or a sentence composed of alphabet of formal language of technical processes.  
Performing a local change to graph’s structure is performed under the instructions given by the 
production rule p : L → R. In fact, the engineering knowledge about how to decompose sub-process 
into set of interrelated operations is formalised within each of the productions. Interpretation and 
application of production p is addressed with the following: 
• the left hand side of the rule L - a sub-graph modelled as labelled multidigraph that will be 

inserted in the host graph G (G is current decomposition step), L has only one Op node |L| = 4, 
• the right hand side of the rule R - a sub-graph that will be inserted at desired place inside the 

graph G, 
• exactly which part of host graph’s structure will be replaced is defined by matching procedure 

m(L), m : L → G which finds L in G, 
• specification of how to reconnect R into the structure of G is defined by the transformation 

algorithm and the connecting procedure ρ. 
Instead of performing graph based search, the matching procedure m(L) is resolved by attaching a 
token to each operation within rule p or host graph G. Same token assumes literally the same 
mappings to TP entities. An example of the rule definition both using token based Backus-Naur 
notation [19] and graph-grammar representations is given in Table 2 (in, out and eff labelled nodes 
omitted for the sake of simplicity, principle operand transformation shown in bold): 

Table 2. Rule definition example in token and graph-grammar representations 

< TP > ::= < SubTP1 > < OP1 > (representing p : L → R) 
< TP > (representing L) 

TPOp1
1 Op2

1

 
< SubTP1 > < OP1 > (representing R) 

Sub TP1 OP1

Eff1

Op1
1

Op2
1Op*

1

Op1
2 Op2

2

 
 
Transformation algorithm and connection procedure ρ are defined as following: 
1. identify L in G, 
2. subtract L from G, 
3. identify interfaces as all of the dangling arcs that have lost source or target node as the result of 

applying 2. and collect these within interface set intf1
4. delete all the edges which are mapped to the effects both from G and intf

, 
1

5. delete in and out labelled nodes from R, 
, 

6. collect interfaces from R and put them in the interface set intf2
7. collect effect labelled edges form R and put them intf

, 
3, 



8. delete eff labelled node from R, 
9. add R to G, 
10. reconnect interfaces using matching of intf1 and intf2 with deletion of all the duplicates from 

intf2, matching implies recognition as true if an edge from intf1 and edge from intf2 have the 
same operand labelling, and that if the edge from intf1 has no source than the corresponding edge 
from intf2

11. copy effects from intf
 must be deprived of target node (vice versa is also acceptable), 

3
12. reconnect the reminder of the interfaces from intf

 to G, 
2

The definition of rule p is completely performed by designer. It involves definition of TP entities and 
their mappings to labelled multidigraph both for L and R. Designer defines a black-box technical 
process formulation with operands in their initial and desired states thus reflecting existing market and 
societal needs. As well, the constraints as an input to the search can be created. Technical process 
synthesis is then performed according to matching procedure m, set of productions of type p : L → R 
and transformation algorithm with connection procedure ρ. An example of technical process synthesis 
depicted as derivation sequences both in token based notation and graph-grammar is shown in Figure 
2. (in, out and eff labelled nodes omitted for the sake of simplicity): 

 as completely new secondary flows emerging 
from the input in or going out from the system towards out. 

TPOd1' Od1''

SubTP1
Od1'

Od1'''
Op1

Od1''
Od2'

Eff1

Od2''

Op2
Od1'

Od1''''

Eff1

Op3Od3'

Od1'''

Eff2

Op1 Od2''

Od1''
Od2'

Od3''

System border

System border

System border

<TP>

<SubTP1> Op1

Op2 Op3 Op1

BNF Sentence

Input

Input

Input

Output

Output

Output

Effects

Effects

Effects  
Figure 2. Derivations example of TP synthesis in BNF and in graph grammars 

Reusing the secondary flow Od2’ as an output of Op3 in order to feed Op1 rather than importing the 
Od2
In order to provide goal based search a grammatical evolution (GE) [20] was added to the technical 
process synthesis method. Grammatical evolution is genetic algorithm based stochastic optimizer that 
seeks out the rule application sequence that is able to produce optimal solution under the given 
criteria. Since GE operate with token based BNF rules, it proved ideal as an addition to the method for 
graph grammar based technical process synthesis. 

’ from the outside of transformation system is the result of applying the connecting procedure ρ.  

6 EXAMPLE 
The purpose of the example is dual: to show the potential of the method for technical process synthesis 
and to elaborate how the variation on technical process level can yield in different function structure of 
technical system. The formulated task is a design of an automated assembly line that is able to deliver 
stiffened steel panels. What designer needs to gain are insights about working principles on which the 
transformation of operands is performed, as well as the necessary effects that need to be provided to 
sustain the transformation. Within this example’s grammar (Figure 4. and Figure 5.), the process of 
stiffened panel assembly is divided within three logical steps: step one is the positioning of steel plates 
and their assembly into a steel panel, step two comprises of cutting of panel to desired dimensions and 
then, possible surface cleaning and setting of the markings for placement of stiffeners. The final step 
comprises of stiffener transport and its positioning. Step three is concluded with further distribution of 
the welded panel. In order to exemplify differences on a technical system level emerging as the result 



of technical process search, welding and riveting are considering as two alternatives for the creation of 
stiffened panel. It is assumed that steel plates and stiffeners enter transformation in the state 
appropriate for appliance of those two technologies including welding joints or holes required for 
riveting. A black-box formulation of such process as it might be specified by designer, with operands 
in their initial and a desired state is given in Figure 3. Goal based search is specified as a completely 
automated welding process involving the least possible number of operations. Derivation stopping rule 
is set to length of 100 steps. 

Stiffened panel
ASSEMBLED

Plate

Plate Stiffened
panelStiffener

 
Figure 3. Stiffened panel assembly black-box process formulation 

< spa > (0) ::= < assembled >< treated >< stiffened > < plateWeld > (0) ::= < plateSec >< plateWeld‘ >_plateRelease

< assembled > (0) ::= _PlatePos < plateWeld > < plateWeld > (1)

< assembled > (1) ::= _PlatePos < plateRivet > < plateWeld’ > (1) ::= < plateWeld >_panelTurn < plateWeld >

< plateRivet > (0):: = < plateSec >< plateRivet‘ >_plateRelease < plateWeld’ > (0) ::= _maw
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Figure 4. Graph grammar of stiffened panel assembly (Part I) 



< treated > (0) ∷=_panelCut < dirtRemoved >_stfPos < stiffened > (0) ∷=_panelPos < stfWeld >

< dirtRemoved > (0) ::= _blast_abrSeparated' <  stiffened > (1) ∷=_panelPos < stfRivet >
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Figure 5. Graph grammar of stiffened panel assembly (Part II) 

6 DISCUSSION 
Number of technical process variants that can be created using grammar as defined in Figure 4 and 
Figure 5 equals 600 not taking into an account 4 branches involving < plateWeld > (1) (see Figure 5) 
for which the introduction of stopping rule was necessary. If only welding alone is considered, than 
168 variants exists (Figure 6), only riveting yields in 108 variants. Combination of technological 
principles as welding of plates with riveting and riveting of plates with welding of stiffeners are the 
rest of transformation variants. It is important to stress out that the mechanisms on which GE is based, 
a combination of genetic algorithm and formal grammar, enable the creation only of the meaningful 
alternatives. Figure 6 depicts welding branch productions sequences only (left hand sides of 
productions shown, search goal solution is gray-shaded).  
An example of how a variation on technical processes (TP) level may yield in different technical 
systems is shown in Figure 7. Because of the lengthy results involving multitude of operations, only 
excerpts from two technical variants are being depicted; one with fully automated panel riveting and 
the other with technical process variant involving fully automated panel welding (as gray-shaded 



derivation sequence in Figure 6). Based on the required effects one or more technical systems could be 
designed in order to sustain technical process. 
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Figure 6. Welding branch productions sequences (search goal solution is gray-shaded) 

This is the reason why the riveting based process is depicted with two technical systems instead of 
one. Technical system for riveting must be capable of provisioning the impact force, thus specifying 
one of the system’s functions. Consequently, the technical system for welding must be capable of 
providing an electrical arc to be able to perform join of two plates into a panel. These two functions 
are direct consequences of different technological principles on which the operand transformation 
variants were founded. There is no other way in which these two technical system’s functions could 
have emerged. The same reasoning holds for securing of rivets and removal of granulate. Moreover, 
the necessary output flows of technical systems, like rivets or welding wire for instance, are also the 
result of different technical process that needs to be supported (assuming that inputs and secondary 
outputs of technical systems are not the same). 
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Figure 7. An example of how a variation on TP level yields in different technical systems 

7 CONCLUSION 
For the creation of computational support for the establishment of technical process synthesis formal 
models of technical process and technical process synthesis were presented. As shown in Table 1 the 
highest point of abstraction from which current approaches start is the functional level not recognizing 
technical processes at all. Further consideration of technical system at lower levels of abstraction 
cannot add new effects since they would redefine what a technical system should do within a 



transformation system, and the only other way to accomplish that change is to affect the technical 
process inside where the main operand transformation is realized. As a proof an example involving 
stiffened panel assembly was shown. 
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