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ABSTRACT 
The most important stage in a product life cycle is the conceptual design which involves uncertainty 
but also opportunity. The SOS (Subjective Objective System) method of generating product design 
alternatives [1] is expanded here to introduce more information to help reduce uncertainty and explore 
design solutions to better suite customer requirements, market conditions, and the use of current 
technology. Hierarchical SOS uses two levels of building blocks: the 1st level contains major building 
blocks (the same as in regular SOS) and the 2nd level contains slightly more detailed articulations of 
the building blocks of the 1st level. The product requirements are cascaded to the 2nd level and are 
translated to secondary targets. The search of the best product design alternatives is done by a genetic 
algorithm (GA). As expected, the new information introduced and manipulated at the 2nd
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 level turns 
out to be critical for creating good conceptual designs of systems. 

1 INTRODUCTION 
The conceptual design stage is crucial since it is the most influential on the success or failure of a 
product to achieve its target goals. However, information used in this stage is quite uncertain and the 
space of possibilities is large and could be expanded further. Therefore, it is difficult to develop a 
systematic approach to generate good design concepts. The classic method of using morphological 
chart to record the options, and heuristically coming up with solutions is very limited. 
There have been different approaches to address this or similar problems, mainly configuration tasks 
where the concept is known and different options need to be selected for each concept part, such as 
computer assembly, choosing actuator type and dimensions, or finding a flat [2-5]. Tools suitable for 
configuration problems are very common on the internet [6-7]. Several studies addressed the issue of 
evaluating a configuration or a concept [8-10]. 
Target Cascading [11] and Hierarchical Overlapping Coordination (HOC) [12] are methods for 
solving a general optimal design problem at the configuration phase. The methods decompose the 
main targets to several smaller optimization problems in several hierarchical levels. The coordination 
between the low-level optimization problems is done by means of connecting variables. The 
coordination between the lower level optimization problems to the upper level optimization problems 
is done by global variables, results and responses. 
Hierarchical Morphological Multicriteria Design (HMMD) [13] is a method suitable for several 
optimization problem classes: selection of representatives, selection of representatives with 
compatibility, and re-configuration, to name some. The HMMD iteratively solves the optimization 
problem taking into account (as inputs) the compatibility between sub-systems Design Alternatives 
(DAs) and the suitability of each DA for several design criteria on an ordinal scale. HMMD is suitable 
for finding an optimal configuration but less for concept design due to the vague description of sub-
systems and their interconnections. 
Two methods [14-15] for automated generation of design concepts for a system’s functional model 
that were later combined [16] to allow designers generate interactively feasible solutions were also 
developed. Another interactive hierarchical method for optimizing a design concept incorporating 
designer's preferences of concepts or sub-concepts is given in [17] and a similar method that considers 
uncertainties of delayed decisions regarding sub-concept selection, yields a set of robust concepts [18]. 
An approach involving the use of a genetic algorithm for the optimization of design configuration is 
described in [19] and a method for optimizing system reliability that could be generalized for design 
concept optimization is given in [20]. 



SOS [1] is a method developed to address directly the concept generation stage. The problem solved 
by SOS is choosing a set of building blocks to produce the best concept to meet customer 
requirements and manufacturer preferences. SOS can produce results as well as the estimation of the 
interactions between building blocks, the mutual constraints among them, and the contribution of 
building blocks to achieving the product requirements.   
In order to reduce uncertainty, we expand SOS to introduce additional knowledge to the conceptual 
design stage via 2nd level building blocks. We also cascade the product requirements to a more refined 
2nd

The outline of this article is as follows. Section 2 discusses the hierarchical SOS method followed by 
an example in section 3. We conclude with main conclusions and further research recommendations. 

 level. This additional level increases the resolution of the problem definition and the information 
used for making design decisions. The extended method presented in this paper is called Hierarchical 
SOS (HSOS). Since the space of design alternatives grows tremendously, the search for the optimal 
conceptual design in HSOS is performed by a genetic algorithm. In the solution process, Pareto-
optimal product concepts are found including hints to improve sub-optimal design alternatives. 

2 HIERARCHICAL SOS 

2.1 A brief overview of SOS 
SOS addresses the need for concept generation tool. With little uncertain information, designers face 
difficulty to combine numerous product building blocks (such as, components, parameters, or 
technologies) to address conflicting requirements. There are constraints between candidate building 
blocks that are expected to be known to the product designer, based on her experience and knowledge. 
In SOS, all such constraints are modeled as linear inequalities, e.g., 
• Mutual exclusiveness: if three components compete to be incorporated in a product concept, the 

linear constraint D1+D2+D3=1, Dj=0,1, j=1,2,3 makes sure that only one building block will be 
selected for the design concept. 

• Functional necessity: component D1 must be selected if component D2 is selected, we get D1-D2≥0. 
If D2=1 is (selected) then D1=1 to satisfy the equation and therefore is also selected. If D2=0 (not 
selected) D1 can assume any value. 

The contribution of building blocks toward satisfying product requirements or targets is modeled as 
decision layers. Let us consider the decision layer described in [1]. For each target, the information 
arrangement is as described in Error! Reference source not found.. 
 

  
Figure 1: Information organization in a layer for each product target 

 
In general, for the target denoted Ll we collect the contribution of each building block to achieving the 
target Ll by the entries of the matrix LI (Layer Information). Each entry { }1,0,1−∈ljkLI  specifies how 
the incorporation of the building blocks (Dj and Dk) in the design alternative vector assists in attaining 
the target Ll. For example, positive impact of Dj on Ll is denoted by 1=ljjLI  and negative impact of 

Dj and Dk on Ll is denoted by 1−=ljkLI . The design alternative (DA) is either a main or a secondary 
design alternative (see more details later). As mentioned earlier, the DA vector consists of chosen 
building blocks. For a DA vector, D, evaluating the target Ll is as follows: 
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Equation 1 is used in HSOS for secondary targets and for the preliminary evaluation of a main design 
alternative attaining a main target. As will be described later, the calculation of a main target is 
dependent on the relevant secondary targets, which is dependent on the secondary design alternatives. 

2.2 Hierarchical SOS method 
The two-level structure of HSOS is described in Figure 2. At level 1, there are M building blocks 
(main building blocks) and K product requirements (targets). Each main building block i=1,2,..,M has 
a corresponding set of secondary building blocks of size Ni. There are two types of DAs depicted in 
Figure 2: main DAs consisting of selected main building blocks and secondary DAs that are DAs of 
main building blocks consisting of selected secondary building blocks from the relevant set of 
secondary building blocks. The final product is comprised of both sets. Each target k=1,…,K has a 
corresponding set of secondary targets of size NK that need to be satisfied. 
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Figure 2: Hierarchical structure of SOS 

 
As in SOS, product requirements (main targets), main building blocks that might attain them, and their 
mutual constraints are defined. SOS is then used for optimal concept generation related to the main 
targets. Subsequently, the main targets are decomposed into secondary targets to be satisfied by the 
level 2 building blocks. It is important to note that achieving the secondary targets is the same as 
achieving the main targets and that the level 2 building blocks are able to support this achievement.  
For example, consider the Survivability requirement of an aircraft of any sort; Survivability can be 
decomposed into the following secondary targets: active protection, passive protection and system 
reliability. These secondary targets might have the same or different importance levels. A building 
block that addresses the active protection is “ammunition carrying capability”; passive protection is 
addressed by “chaff spreading ability” or "stealth"; and system reliability is addressed by introducing 
“redundancy of critical systems” or “extensive testing” to the aircraft. 
Level 2 set of building blocks provides a slightly more detailed concept representation of each main 
building block. Several groups of constraints (for implementing constraints such as mutual 
exclusiveness and functional necessity) might be imposed on the composition of the level 2 building 
blocks: 
1. Within-block constraints address the composition of two building blocks from the same set. 
2. Between-block constraints deal with relations between two (or more) level 2 building block sets 

of different main building blocks. 
3. Multi-level constraints deal with the influence of selecting main building blocks in the main 

design alternative (level 1) on the inclusion or exclusion of a level 2 building block associated 
with one or more main building blocks. 

Some main targets are relevant only to the main building blocks and are therefore not decomposed and 
are not subjected to level 2 performance evaluation. The decomposition of the other main targets into 
secondary targets can be done in one of the following forms, depending on each main target and the 
definition of level 2 building blocks: 
a) Achieving some main targets might depend on some main building blocks whose performance 
could be influenced by the way they are created from level 2 building blocks. Consider a main target T 
relevant to a set S of m main building blocks out of M (size(S)=m<M). The main target T is 



decomposed into a set of secondary targets tj with relative importance ωj. The secondary targets 
depend on the performance of the building blocks selected at level 2. It is possible for each main 
building block performance to have a different relative importance for achieving the main target T. 
That relative importance of the ith

 

 main building block is denoted as Ωi. Now, define tji as level 2 
performance towards target tj of level 2 DA representation of main building block Di. The evaluation 
of target T is: 

[ ]∑ ∑Ω= ∈ =Si ji
N
j ji tT 1ω  (2) 

For example, the main target T is decomposed into two secondary targets t1 and t2 with relative 
importance of ω1=0.3 and ω2=0.7, respectively. There are M=5 main building blocks, but attaining the 
main target T is done only by building blocks D1, D2 and D4 (m=3). Attaining the main target T 
depends more on the performance of building block D2 with relative importance Ω2=0.5. The relative 
importance of building blocks D1 and D4 is equal: Ω1=Ω4=0.25. For the valid main design alternative 
DA=[11011] (in this case the product consists of four main building blocks - D1, D2, D4 and D5). The 
target value of T is calculated using only its three relevant building blocks:   
T=Ω1·[ω1·t11+ω2·t21]+ Ω2·[ω1·t12+ω2·t22]+ Ω4·[ω1·t14+ω2·t24] =  
 0.5·[0.3·t11+0.7·t21]+ 0.25·[0.3·t12+0.7·t22]+ 0.25·[0.3·t14+0.7·t24]. 
b) In case achieving a main target depends on all the main building blocks we get: 
 [ ]∑ ∑Ω= = =

M
i ji

N
j ji tT 1 1ω  (3) 

SOS is used for generating a valid level 2 product representation while evaluating secondary targets. 
The goal is to find an optimal concept in terms of both levels building blocks that will best attain the 
main targets, i.e., achieves the highest score attaining all targets. This is a multi-objective optimization 
problem solved by an iterative process implemented by a genetic algorithm (GA). The GA is used for 
exploring the large space of valid DAs in both levels representations of the product. The GA used here 
is inspired by, but slightly different from, the NSGA-II [21]. 
The Boolean nature of DAs at both levels ("1" means a building block is included in the design 
concept, "0" means it is not included) makes it appealing for use by GA without further adjustments. 
The GA consists of several stages: 
• Generating an initial parent population (of size N) and evaluating targets for each population 

member. For each concept composed of main building blocks, a level 2 representation of building 
blocks (i.e., an appropriate chromosome) is generated (a combination of 2nd

Figure 3
 level building blocks 

for each main building block - ). In HSOS, this representation is used for evaluating 
secondary targets (using appropriate 2nd

 

 level decision layer matrices) and later, re-evaluating the 
main targets (equations 2 and 3). 

 
Figure 3 - Two parents Design Alternatives with corresponding representations for both levels 

(1 & 2 chromosomes). Notice the different lengths of level 2 chromosomes 

 
• Performing a Domination Sort over the parent population. This creates several sets (or Pareto 

fronts) in which members of one dominate those in the other. The non-dominated DAs are 
included in the optimal Pareto-front. If those are removed, another front could be created, etc.  

• Genetic operators such as selection, crossover (Figure 4) and mutation (Figure 5) are used to 
produce the children population of DAs from the sorted parent population of DAs. The children 
DAs are checked for validity (in terms of both levels building blocks and constraints) and their 
secondary and main targets are evaluated. In order to produce better DAs in the children 
population, the higher ranked parent DAs are more likely to participate in the genetic operators. 

• The parent and children populations of DAs are combined and later are sorted by non-
domination. The best N DAs are selected as the parent population for the next generation. In 



addition, the lowest-ranked DAs (located on the worst Pareto front) are cleared of repetitions 
(authors' choice for keeping diversity; in this manner, the GA presented here differs from NSGA-
II). This is done to preserve the initial population size N (though the population size might 
decrease) and to guarantee diversity. 

• Repeating the search for the optimal DA until a stopping and/or convergence conditions are met. 
It is common to choose a limit on the number of generations (search iterations) as a stopping 
condition. Common convergence conditions are decreasing population size that can occur due to 
many repetitions in a population consisting of DAs located only on the Pareto-optimal front; or 
an insignificant change in the average performance of the Pareto-optimal DAs. 

The population of DAs after the GA has stopped is sorted to Pareto-fronts (optimal, sub-optimal etc.). 
 

 
Figure 4 - Two children Design Alternatives resulting from crossover of parent Design 

Alternatives given in Figure 3. The Crossover operator is applied at Level 1 altering the 
coupling of Platform-Payload only. Respective Level 2 chromosomes do not change. 

 

 
Figure 5 - Two children Design Alternatives resulting from mutation applied to parent Design 

Alternatives given in Figure 3. The mutation is applied at Level 2 only, altering several bits of Level 
2 chromosomes in predefined places (red coloured). The parent concept does not change. 

3 EXAMPLE 
A simple design problem demonstrates HSOS: optimally combining a payload and an aerial carrying 
platform. HSOS generates design concepts and searches for, and selects the optimal design concept(s). 
We compared the optimal designs generated by a single level SOS and HSOS. 

3.1 1st level definitions 
The definitions of main building blocks and main targets are given in Table 1. The main building 
blocks are divided into two groups: "platform-type" and "payload-type". The constraints are simple: a 
main design alternative is a combination of one platform-type building block and one payload-type 
building block. Additional constraints address the platform carrying ability: only "manned plane" and 
"large UAV (unmanned aerial vehicle)" are capable of carrying SAR (synthetic aperture radar) and 
dual payloads (dual payload is any combination of two of the three available payloads). The 12 valid 
main design alternatives are shown in Table 2. 

3.2 2nd level definitions 
Decomposition of the main targets to secondary targets and their relative weights is presented in 
Error! Reference source not found.. Attaining some main targets may be associated with the 
performance of a single main building type (platform or payload) and some others might depend on 
the combined performance of both types of main building blocks. This division of dependency is also 
described in Error! Reference source not found.. For main targets depending on the performance of 
both main building types, one type of the main building block types might contribute more strongly to 
attaining these main targets. This stronger contribution is captured by a relative importance weight. 



Next, each main building block is decomposed into a set of level 2 building blocks. This could benefit 
from the influence of the secondary targets and the relevancy of each type of main building block 
(platform, payload or both) to the main target. The sizes of the sets might differ even among main 
building blocks of the same type. 
Sets of secondary building blocks relevant to platform-type main building blocks contain, in general, 
building blocks related to propulsion type, communications, structure and geometry, operational 
parameters, etc. Sets of secondary building blocks relevant to payload-type main building blocks 
contain, in general, building blocks regarding stabilization of payload, recording ability, data 
transmission and compression, etc. The dual payload set of secondary building blocks contains the 
three combinations of main payloads (FLIR+CCD cameras, FLIR camera + SAR and CCD camera + 
SAR) in addition to the above described payload-type secondary building blocks typical sets. 
 

 

Table 1: Main targets and building blocks 

Main building blocks Main targets 
Platform-type  Payload-type  Survivability 

Cost 
Resolution 
Simplicity 

Mission Duration 
Risk 

Area Coverage 

Manned Plane 
Large UAV 

Medium UAV 
Blimp 

FLIR camera 
CCD camera 

SAR 
Dual payload 

 
Nomenclature: 

CCD - Coherent Change Detection 
FLIR - Forward Looking Infra Red 
SAR - Synthetic Aperture Radar 
UAV - Unmanned Aerial Vehicle 

 

Table 2: Main valid DAs 

# of DA Main DA 
 Platform Payload 

1 Blimp CCD camera 
2 Blimp FLIR camera 
3 Medium UAV CCD camera 
4 Medium UAV FLIR camera 
5 Large UAV Dual Payload 
6 Large UAV SAR 
7 Large UAV CCD camera 
8 Large UAV FLIR camera 
9 Manned Plane Dual Payload 
10 Manned Plane SAR 
11 Manned Plane CCD camera 
12 Manned Plane FLIR camera 

 

 

Table 3: Relevancy of building block type and decomposition to secondary targets and 
relative weights of secondary targets 

Main Target Secondary Targets Relative Importance 
Platform Payload Platform Payload 

Survivability Active Protection - 0.4 
Passive Protection - 0.2 
System Reliability - 0.4 

Irrelevant 1.00 0.00 

Project Risk Evaluated through main building blocks. Not decomposed into secondary targets 
Area 

Coverage 
High Velocity - 0.9 

Multi-Payload Carrying Ability - 
0.1 

High Altitude - 0.6 
Recording Ability - 0.25 

Bore sight Accuracy - 
0.15 

0.50 0.50 

Mission 
Duration 

Fuel Capacity - 0.8 
High Endurance - 0.2 

Irrelevant 1.00 0.00 

Cost Irrelevant Single Unit - 0.5 
Simple Technology - 0.5 

0.00 1.00 

Resolution Irrelevant Low Altitude - 0.7 
High Sensitivity - 0.3 

0.00 1.00 

Simplicity Simple Design - 1 Simple Design - 1 0.50 0.50 

3.3 Evaluation of Main targets: Single level SOS 
The main targets were evaluated based on the performance of the main DAs shown in Table 2. The 
results are presented in Table 4: Performance of main DAs and 3.4.2 Type 1 Simulations - single targets - results 
The GA conducts a search in the space of valid level 2 DAs. The GA did not always converge to the 
global maximum target value and required repeating the simulations to gather statistics.  



For some main targets, HSOS simulation results did not agree with the single level SOS target 
evaluation. This disagreement is associated with the additional information introduced in the HSOS 
level 2 building blocks. This new information might relax or limit the incorporation of building 
blocks, implementation characteristics, etc., that were not consistent with the a-priori evaluation of the 
single level SOS. In all these cases, we verified that the concept generated by HSOS was correct from 
an engineering standpoint. 
The Pareto-optimal concepts displayed few variations, expressed in different chromosomes describing 
level 2 DAs. The difference between the chromosomes was in several bits (i.e., selecting a secondary 
building block for one DA and not selecting it for the other DA). This result is not surprising, taking 
into account the single level SOS evaluation results for each target independently, showing that for 
each target there is a limited number of DAs scoring the maximum target value. 
Table 5. For each main target, the performance of each main DA was evaluated. We look for product 
concepts achieving maximum score for all targets. The DAs are divided into three fronts by 
domination: Pareto-optimal front, sub-optimal front #1 and sub-optimal front #2 (this front contains 
the DAs with worst performance towards all targets). The fronts are numbered 1, 2, and 3, 
respectively. 
The single level SOS simulation suggests that there are eight optimal concepts. These concepts are the 
non-dominated concepts and are located at the Pareto-optimal front. The Pareto-optimal concepts 
achieve the maximum score for at least one main target (concepts 1, 3, 5, 6, 7, 9, 10, 11). Some 
concepts achieving maximum score of main targets are dominated by other solutions and therefore are 
located at the sub-optimal front. The worst concept is dominated by a sub-optimal concept. 

3.4 Hierarchical SOS 

3.4.1  Simulations performed 
Several simulation types were performed in order to analyze the design concepts generated by HSOS: 
• Type 1: Repeated simulations for each single target. Each optimal concept was checked for 

variations (e.g., how many level 2 DAs exist for each optimal concept). Disagreements between the 
single level SOS and HSOS were also analyzed. The population size for these simulations was 400 
and the number of iterations (generations in terms of GA) was limited to 10. 

• Type 2: Repeated simulations for couples of targets (selecting 2 out of 7 main targets). These 
simulations were used to view the performance of the GA and variations in level 2 DAs. The 
population size for these simulations was 400 and the number of iterations (generations in terms of 
GA) was limited to the maximum of 10. 

• Type 3: Repeated simulations for all 7 main targets. These simulations were used to check the 
Pareto-optimal generated concepts for variety and for comparison with the single level SOS Pareto-
optimal designs. The population size for these simulations was 4000 and the number of iterations 
(generations in terms of GA) was limited to the maximum of 10. 

For all simulations performed, the sensibility of the optimal design concepts generated was checked. 
Table 4: Performance of main DAs 

DA # 
Main Targets 

Survivability Cost Area Coverage Resolution Simplicity Duration Risk 
1 1 4 -1 2 4 4 1 
2 -1 0 -1 -1 0 2 1 
3 2 4 1 2 2 3 3 
4 0 4 1 -1 2 1 3 
5 -3 -4 4 3 -2 -2 -4 
6 0 -2 3 3 0 -2 2 
7 2 2 1 0 2 4 1 
8 2 0 1 -1 2 2 1 
9 -2 -3 4 3 -2 -4 -2 

10 1 -1 3 3 0 -4 4 



11 3 3 1 0 2 2 3 
12 3 3 1 -1 2 0 3 

3.4.2  Type 1 Simulations - single targets - results 
The GA conducts a search in the space of valid level 2 DAs. The GA did not always converge to the 
global maximum target value and required repeating the simulations to gather statistics.  
For some main targets, HSOS simulation results did not agree with the single level SOS target 
evaluation. This disagreement is associated with the additional information introduced in the HSOS 
level 2 building blocks. This new information might relax or limit the incorporation of building 
blocks, implementation characteristics, etc., that were not consistent with the a-priori evaluation of the 
single level SOS. In all these cases, we verified that the concept generated by HSOS was correct from 
an engineering standpoint. 
The Pareto-optimal concepts displayed few variations, expressed in different chromosomes describing 
level 2 DAs. The difference between the chromosomes was in several bits (i.e., selecting a secondary 
building block for one DA and not selecting it for the other DA). This result is not surprising, taking 
into account the single level SOS evaluation results for each target independently, showing that for 
each target there is a limited number of DAs scoring the maximum target value. 

Table 5: Composition of main DAs and their relative performance 

# DA Platform DA Payload Domination Dominated by Front 
1 Blimp CCD Non-Dominated  1 
2 Blimp FLIR Dominated Solution 3, 11, 1, 7, 8 3 
3 Small UAV CCD Non-Dominated  1 
4 Small UAV FLIR Dominated Solution 3 2 
5 Large UAV DUAL SENSOR Non-Dominated  1 
6 Large UAV SAR Non-Dominated  1 
7 Large UAV CCD Non-Dominated  1 
8 Large UAV FLIR Dominated Solution 11, 7, 3 2 
9 Manned Plane DUAL SENSOR Non-Dominated  1 
10 Manned Plane SAR Non-Dominated  1 
11 Manned Plane CCD Non-Dominated  1 
12 Manned Plane FLIR Dominated Solution 11 2 

3.4.3  Type 2 simulations - two targets - results 
Several simulation results for different couples of main targets are shown in Figure 6 to Figure 9: 
Extreme values for Survivability target of Pareto-optimal main design concepts . The results shown 
are taken before the final convergence to show different types of Pareto-optimal fronts. Pareto-optimal 
design concepts are marked with black dots. As can be seen, 400 design alternatives converged to a 
small number of points on the Pareto-optimal front. These concepts have “close siblings” (concepts 
with the same main building blocks and a small variation in level 2 building blocks) in the population. 
For example, the Manned Plane + Dual Payload main DA appearing in the Pareto-optimal design 
concept set in Figure 9: Extreme values for Survivability target of Pareto-optimal main design 
concepts , has several sibling level 2 DAs that differ by a slight choice of level 2 building blocks. 
Increasing the total number of DAs in a population from 400 to 1000 does not change the Pareto-
optimal main design concept set but increases level 2 variations of those main concepts. 
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Figure 6: Pareto-optimal front consisting of a single 
point for cost-survivability targets 

Figure 7: Pareto optimal front consisting 
of three points 

 
An interesting finding is that for certain combinations of main targets, close siblings of some of the 
main design concepts on the Pareto-optimal front are in the nearest suboptimal front. This suggests the 
robustness of these main design concepts - a small change in the relative weight of the secondary 
targets might turn several suboptimal representations of a main design concept into Pareto-optimal 
designs, or a slight change in the optimal concept would not deteriorate the performance significantly. 
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Figure 8: Pareto-optimal front consisting of 
multiple points 

Figure 9: Extreme values for Survivability 
target of Pareto-optimal main design concepts  

3.4.4  Type 3 simulations - all targets - results 
These simulations yielded the optimal design concepts taking into consideration all seven targets. 
Shown in Error! Reference source not found., the minimum and maximum values for the 
Survivability main target of the Pareto-optimal design concept set, for each generation. As can be 
seen, all twelve main design concepts (Table 2) are present and are therefore included in the Pareto-
optimal set in contrast to the single level SOS where only eight main design concepts are included in 
the Pareto-optimal set. This disagreement is associated with the addition of information introduced in 
HSOS that caused inferior design concepts to become relevant optimal design candidates. 
Since the Pareto-optimal set is large (4000 DAs consisting of all twelve main design concepts) 
filtering to ease selection is needed. The filter criteria require some minimum value of targets to pass 
it. One of the filters with particular minimal values (i.e., Risk≥2, Duration≥2 Simplicity≥10, Area 
Coverage≥0, Resolution≥0) resulted in narrowing the size of the relevant Pareto-optimal main design 



concepts to 3 out of the 12 main design concepts: Manned Plane + FLIR Camera (116 variants), 
Manned Plane + SAR (10 variants) and Large UAV + SAR (only 2 variants). The large number of 
population members (4000) contributed to finding many variations for the Manned Plane + FLIR main 
design concept and to preserve the other main design concepts members of the Pareto-optimal set. 

4 CONCLUSIONS 
This paper presented the Hierarchical SOS method for generating optimal design concepts. HSOS 
introduces additional design information concerning the incorporation of building blocks towards 
attaining product requirements. This new information that is used by HSOS turns out to be important: 
it sometimes causes inferior designs according to single level SOS to become members of the Pareto-
optimal concept designs set created by HSOS. In addition, sometimes the relationships between main 
building blocks might become clearer through level 2 sets of building blocks. 
Obtaining the optimal design concepts is a challenging task, especially with large search-space, such 
as provided by the level 2 space of design alternatives. Searching this space is made possible by a GA. 
However, the optimal designs obtained by the GA might not be the global optimal designs and 
repeating the simulations is needed to gather enough data for statistical analysis. The size of the 
population might have impact upon the amount of variants (different level 2 representations) of the 
same main design concept appearing in the Pareto-optimal set. HSOS assists in finding different 
design alternatives for the same design concept. This provides a basis for assessing the robustness of 
design concepts. If the Pareto set of optimal concepts created by HSOS is large, filtering it by 
requesting that each target achieves some minimal value can be used to reduce it, hence providing a 
better basis for concept selection.  
HSOS could be used to address the well defined problem of configuration by having users input their 
preferences concerning each existing building block. With further investigation, HSOS could be used 
for robust concept generation. Concepts at level 1 that are represented well in level 2 Pareto front seem 
to be robust. This intuition needs to be transformed into precise definition and procedure. HSOS could 
also be used to trigger creativity: when using HSOS, it becomes clear that constraints between 
building blocks prevent their use in a single concept that would lead to better user satisfaction. In such 
case, creativity methods such as TRIZ or ASIT could be used to resolve the constraint.   

REFERENCES 
[1] Ziv-Av A, Reich Y, SOS - Subjective Objective System for generating optimal product concepts. 

Design Studies, 2005, 26(5):509-533. 
[2] Slater PJP, Pconfig: A web based configuration tool for configure-to-order products. Knowledge-

Based Systems, 1999, 12(5-6):223-230. 
[3] Wolfe WJ, Internet based product configuration, CAD drawing generation - A review of present 

system and technology. In Proceedings of IFPE, Las Vegas, 2002. 
[4] Yuan Q-K, Zhang M-T, Shi Y-P, An eCommerce-oriented product configuration design system 

based on web. In International Symposium on Web Information Systems and Applications, 
WISA’09, Nanchang, P. R. China, 2009, pp. 414-418. 

[5] Pu F, Faltings B, Decision Tradeoff using example-critiquing and constraint programming. 
Constraints, 2004, 9(4):289-310. 

[6] Moller J, Anderson HR, Hulgaard H, Product configuration over the internet. In Proceedings of 
the 6th INFORMS Conference on Information Systems and Technology, Florida 2001. 

[7] DMBrowne  web site, http://www.pda-archives.com/dmbrowne/index.htm 
[8] Smith C, Verma D, conceptual system design evaluation: rating and ranking versus compliance 

analysis. System Engineering, 2004, 7(4):338-351. 
[9] Malak RJ Jr, Paredis CJJ, Using parameterized Pareto sets to model design concepts. Journal of 

Mechanical Design, 2010, 132(4):041007-1 - 041007-11. 
[10] Hong G, Xue D, Tu Y, Rapid identification of the optimal product configuration and it's 

parameters based on customer-centric product modeling for one-of-a-kind production. Computers 
in Industry, 2010, 61(3):270-279. 

[11] Michelena N, Kim HM, Papalambros P, A system partitioning and optimization approach to 
target cascading. In Proc. International Conference on Engineering Design, ICED'99 Vol 2, 
Munich, 1999, pp. 1109-1112. 

[12] Michelena N, Park HA, Papalambros P, Kulkarni D, Hierarchical overlapping coordination for 



large-scale optimization by decomposition. AIAA Journal, 1999, 37(7):890-896. 
[13] Levin M Sh, Hierarchical morphological multicriteria design of decomposable systems. 

Concurrent Engineering Research and Applications, 1996, 4(2):111-117. 
[14] Bryant CR, McAdams DA, Stone RB, Kurtoglu T, Campbell MI, A computational technique for 

concept generation. In Proceedings of ASME Design Engineering Technical Conference and 
Computers and Information in Engineering Conference, IDETC05/CIE, DETC2005-85323, 
2005, Long Beach, California. 

[15] Bohm MR, Vucovich JP, Stone RB, Capturing creativity: using a design repository to drive 
concept innovation. In Proceedings of ASME International Design Engineering Technical 
Conference and Computers and Information in Engineering Conference, IDETC05/CIE, 
DETC2005-85105, 2005, Long Beach, California. 

[16] Bryant CR, Bohm M, Stone RB, McAdams DA, An interactive morphological matrix 
computational design tool: a hybrid of two methods. In Proceedings of ASME International 
Design Engineering Technical Conference and Computers and Information in Engineering 
Conference ,IDETC07/CIE, DETC2007/DTM-35583, 2007, Las Vegas, Nevada. 

[17] Avigad G., Moshaiov A., and Brauner N. Interactive concept-based search using MOEA: the 
hierarchical preferences case. International Journal of Computational Intelligence, 2005, 
2(3):182–191. 

[18] Avigad G., Moshaiov A. Set-based concept selection in multi-objective problems involving 
delayed decisions. Journal of Engineering Design, 2010, 21(6):619-646. 

 [19] Li B, Chen L, Huang Z, Zhong Y, Product configuration optimization using a multiojective 
genetic algorithm. International Journal of Advanced Manufacturing Technology, 2006, 
30(2):20-29. 

[20] Limbourg P, Kochs H-D, Multi-objective optimization of generalized reliability design problems 
using feature models - a concept for early design stages. Reliability Engineering and System 
Safety, 2008, 93:815-828. 

 [21] Deb K, Agrawal S, Pratap A, Meyarivan T, A fast elitist non-dominated sorting genetic algorithm 
  for multi-objective optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton 

E, Merelo JJ, Schwefel H-P, editors, Parallel Problem Solving from Nature VI Conference, 2000, 
Paris, pp. 849–858.  

  
 
Contact: Prof. Yoram Reich 
School of Mechanical Engineering 
Tel Aviv University 
Tel Aviv 69978 
Israel 
Tel: +972 3 6407385 
Fax: +972 3 6407617 
Email: yoram@eng.tau.ac.il 
URL: http://www.eng.tau.ac.il/~yoram 

 

David Rosenstein received his B.Sc. in 2003 from the Faculty of Aerospace Engineering at the 
Technion, Israel Institute of Technology and is currently studying for the M.Sc. degree at the Faculty of 
Engineering, Tel Aviv University under the supervision of Prof. Yoram Reich. 

 

Yoram Reich is a professor at the Faculty of Engineering, Tel Aviv University. He is the Editor-in-Chief 
of Research in Engineering Design and serves on the editorial board of 5 other journals; a co-chair of 
the design theory special interest group of the design society, and a member of the advisory board of 
the society. He recently founded and is the chairman of Israel Institute for Innovation Technology 
 

mailto:yoram@eng.tau.ac.il�
http://www.eng.tau.ac.il/~yoram�

