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ABSTRACT 
This paper discusses the effects of team structure on the performance of design teams. Three types of 
team structures are differentiated on the basis of the functional and social groups that result from task 
dependencies and interaction opportunities. The reported findings are based upon results from 
simulation-based studies using a computational model. Differences across the team structures are 
investigated through a series of simulations in which the team membership and the workload busyness 
of the team members are independent variables, and the team performance and formation of team 
mental models are the dependent variables. Team performance is measured in terms of the ability of 
the team members to coordinate the set of tasks the team needs to perform. Findings suggest that, in 
general, flat teams facilitate formation of team mental models, while functional teams are best for 
efficient task coordination. 

Keywords: team structure, team performance, team mental models, social learning, member retention, 
busyness  

INTRODUCTION 
The design of engineered products is a complex activity that requires decomposition into tasks 
according to product function or (modular) sub-system [1]. Design teams are usually formed to 
perform a set of tasks that require specialized knowledge such that the team of specialists can 
collectively complete them. The roles and responsibilities of the team members need to be clearly 
defined, and aligned to their areas of expertise. The performance of the design team depends on how 
effectively the team members coordinate the tasks, roles and responsibilities with the other members 
of the team. Working in design teams requires additional actions beyond those related to the task [2]. 
These actions correspond to prosocial aspects of teamwork such as knowledge sharing and 
communication [3-4]. The prosocial activities contribute to the entrainment of their behavior to one 
another. In the absence of such opportunities, merely collecting a knowledgeable engineering design 
team may not ensure high performance [5]. Effective teamwork requires team members to have well-
developed mental models of each other and that of the tasks, processes, context and competence 
specific to the project [6-7], where mental models are the simplified internal representations of the 
world [8]. This paper deals with the formation of team-related team mental models (TMMs). The 
formation of team-related team mental models involves team members developing mental models of 
each other’s competence and expertise, which allows them to coordinate the different tasks by 
assigning the right job to the right people. 
While there are a number of factors that influence the formation of the TMM, this project investigates 
the structure of the team and the opportunities for socialization, as these variables are difficult to 
control in empirical studies. How the team is organized in terms of the task allocation and social 
observation opportunities should affect the formation of TMMs, and the ability of the team of experts 
to coordinate the tasks. The following three types of team structures are differentiated:  
Flat teams have no hierarchy and no sub-divisions. Such teams are generally used for consultation, 
task-force and design exploration [9]. There are no nominated leaders. A leader may emerge over 
time, based on the interactions within the team. 
Distributed flat teams: With the increased use of communication technology, design teams are often 
distributed across geographies, e.g., global product development teams [10]. In such teams, sometimes 



 

social cliques develop, where the team is divided into two to three collocated clusters. Thus, even if 
the teams are flat for the purpose of management, the opportunities for social learning are skewed due 
to the physical boundaries [10].  
Functional teams: Many work teams are organized into functional sub-teams [11-12]. In such teams, 
the task is passed to the members from the sub-teams with relevant domain knowledge. Even if the 
hierarchy is not pre-defined, hierarchy emerges as the task is decomposed into sub-tasks, and members 
are chosen to coordinate those tasks. A team member from each sub-group emerges as the group 
leader as the project progresses. This member also coordinates the activities of that group, at the 
higher level, with the other group leaders. 
Opportunities for socialization can be encumbered in a number of ways, and this paper will focus on 
two variables, which are, again, difficult to control in empirical studies. Design teams are mostly 
project-based. Project-based teams are commonplace in large organizations, joint ventures, SMEs and 
in virtual teams [13-15]. Team composition may vary and affect the formation of TMMs and the team 
performance in such teams. To achieve higher team performance, managers and project leaders strive 
to maximize the number of team members who have previously worked together on a similar project 
[16], which we define as member retention. However, retaining the entire team or some team members 
from one project to the next may not always be possible, and members will likely work on more than 
one project at a time. Second, organizing the available human resources in project-based teams allows 
firms and organizations to simultaneously engage experts in multiple projects and teams [17]. The 
resulting workload and distributed attention across the different teams may influence the TMM 
formation and the team performance because team members’ attention is diverted from prosocial team 
activities to learn about other agents [18]. That is, their workload busyness will diminish their 
opportunities for socialization, which can decrease chances for TMM formation. 
In summary, this study compares the effects of team structures on TMM formation and team 
performance through two independent variables, team member retention and workload busyness. This 
research adopts a computational approach, which facilitates the control of parameters such as busyness 
levels and team structure, which are difficult to control in empirical studies. The computational model 
has been validated in earlier studies for its usefulness and consistency in generating and testing 
organizational and social behavioural theories in terms of TMM formation [19]. Team performance 
will be measured in terms of the amount of team communication. Teams requiring fewer message 
exchanges to coordinate the same set of tasks are deemed to be higher performing teams [20]. 

DESCRIPTION OF THE COMPUTATIONAL MODEL 
The computational model is implemented as an agent society with team agents as the team members. 
There is a client agent in addition to the team agents that allocates the task to the team and selects one 
of the team agents as a team leader at runtime. The model is briefly described in this section. 

Team structure  
The three types of team structures are implemented by defining the task allocation and social 
observation conditions, Table 2. Flat teams allow members unrestricted access to all the agents in the 
team for task allocations as well observations. In functional teams, not only is an agent’s ability to 
observe the other agents limited within the sub-team, but even most of the task-allocation interactions 
are within the sub-team. In distributed flat teams, agents can allocate tasks to any other agent in the 
team, but their ability to observe the other agents is limited to the members within their social cliques. 
In all the simulations, the leader is chosen by the client agent. 

Table 2. Team types and corresponding scope for task allocation or social observation 

 



 

Agent learning  
Rather than modelling cognitively rich agents that improve their own performance through experience, 
the model implements (1) the types of social experiences that have significant influences on individual 
learning, and (2) how cumulative individual experience increases individual proficiency when agents 
have the ability to learn from others [21] about what others know so that the agents can be more 
efficient at coordinating work [22]. To do this, the model adopts the mechanisms of knowledge 
transfer that are social [23]. It is assumed that individual agents have sufficient knowledge of the 
process and context of the task to be performed by the group, all that the agents need to learn about is 
others’ competence. Agents learn as they interact with each other and the task that they are 
performing. Agents also learn by observing the interactions between the other agents or the interaction 
of some other agent with their task.  
The model is grounded in the Folk theory of mind, which claims that the ability of humans to 
understand others as intentional beings, similar to oneself, allows individuals to learn from the social 
interactions and observations [23-25]. All agent actions in this model are assumed to be intentional, 
which allows agents to build a mental model of the other agents in the team. Agents learn about the 
other agents in the team based on the actions of the others, which are observable [26-27]. During these 
interactions and observations attention plays a critical role such that the learner is concerned with only 
a subset of all the things that can be perceived at the given moment [25]. Observation is subject to an 
agent’s availability to attend to the observable data, and, hence, mitigated by the level of busyness 
[18]. What the agents learn is based on a set of rules [19] derived from the mode of social learning: 
1. Personal interaction (PI): Personal interactions are the most direct form of learning. Agents learn 

by directly interacting with other agents or from personal experience with the task. An agent 
learns something about the task and the agent that it directly interacts with. For example, if A 
talks to B about task T1, then B learns something about A with respect to T1

2. Interaction observations (IO): When agents have the opportunity to observe the interaction 
among other agents they learn something about the agents that are interacting. For example, if A 
observes B allocating task T

. 

1 to C, then A learns something about the relationship between B and 
C with respect to T1

3. Task observations (TO): Agents may also have the opportunity to observe other agents while they 
perform a task and learn something about the observed agent and the task. For example, if A 
observes B performing the task T

.  

1, then A learns something about B with respect to T1

Modelling tasks 

. 

The agents work on a routine design problem that can be decomposed into subtasks. Each agent has 
the knowledge to complete some of the subtasks, but the entire design solution is not known in 
advance [28]. Each agent’s (sub)task may have more than one (non-unique) solution. Task 
coordination requires finding agents who have the skill to complete the task. The speed at which the 
agents complete the entire set of tasks is dependent upon the time it takes for the agents (as a team) to 
provide one possible solution as a combination of each agent’s solution to its assigned subtask. The 
agents’ aggregate solution must satisfy the specified requirements. 
For a given task, multiple solutions may exist, and an agent can only provide a solution that lies within 
its capability range, where the capability range of an agent is the range of solutions that an agent can 
provide for a given task. The capability range is a proxy for the degree of skill for an agent. Two 
agents assigned the same task may provide different solutions because they may have different 
capability ranges for the same task. Therefore, the task performers (agent) need to identify the solution 
space acceptable to the evaluator (some other agent or the client). The client has a desired range of 
parameters for the requirements of the overall solution. The team agents are required to collectively 
generate a solution that falls within the client’s acceptable range. The teamwork involves coordination 
and evaluation of the sub-solutions such that all the sub-solutions are compatible. 
One task may branch out into multiple sub-tasks and their solutions need to be compatible. Hence, the 
tasks require solution integration and compatibility check. This may require reallocation of the same 
tasks to the same or some other agent. The solutions are evaluated at the integration stage, following a 
top down approach, i.e., the solutions for higher-level tasks are completed first. Initially, the client 
approves the overall acceptable solution range. The team leader, appointed by the client on the basis of 
a competitive bid, considers this approved range as the boundary limit when evaluating the solutions 
for the corresponding sub-tasks. Once the team leader approves sub-tasks provided by other agents, 



 

those agents consider the approved solution as a benchmark to refine the acceptable solution range for 
the solutions to be coordinated at the next lower level. This cycle continues until all the tasks are 
decomposed into the lowest levels. If the integrated solution exceeds the boundary conditions, the 
agent evaluating and coordinating the integrated solution, i.e. the evaluator, chooses one of the sub-
solutions to be reworked. This cycle of task evaluation and rework continues until the sub-solutions 
are compatible at each level. 

Simulating TMM formation 
As agents interact, they build mental models of each other. The development of their TMMs involves 
learning about the competence and skills of each agent for each of the different tasks the team needs to 
perform. The mental model for an individual agent is termed the Agent Mental Model (AMM), and 
collectively, the AMMs within an agent for all other agents form a TMM. The TMM formed by each 
agent may be different to the TMM of another agent because the agents will have differential 
opportunities for social learning. 

Implementing mental models 
An agent’s AMM is represented as an m-dimensional vector showing the competence values and the 
capability range in the m possible tasks within the team. The TMM is represented as an m × n matrix 
where n is the total number of agents. When an agent receives a positive or negative feedback on 
another agent’s competence, the corresponding values are updated in the TMM matrix. 

Using the TMM for task allocation and handling 
Agents allocate the task to the agent that they believe to have the highest competence in the given task. 
When the simulation starts (at time t=0), all the agents have the same default value for the competence 
in each task. In such a scenario, agents allocate the task to a random agent. Once the agents have 
gained experience working with each other, there will be differences in known competence of the 
agents in a given task. It is possible that more than one agent has the highest competence value. In that 
case, the agent creates a shortlist of all the agents with the highest competence value, and the task is 
allocated to an agent randomly selected from this shortlist. 
Agents propose solutions based on their own capability range and the range of acceptable solutions for 
the agent that allocated the task, i.e., the task allocator.  The task performer looks up the TMM for the 
capability range of the task allocator, corresponding to the given task. For the selected solution to be 
accepted, the solution must also overlap with the solution range acceptable to the task allocator. Once 
the agent has identified a shortlist of solutions that it can provide and that are also acceptable to the 
task allocator, it can choose any of the solutions from the shortlist, provided the chosen solution has 
not already been proposed in the same project. Since the agent constantly updates the task allocator’s 
acceptable solution range as soon as it gets a feedback, the task performer is able to adapt the solution 
to suit the task allocator. Thus, teams with a well-developed TMM are expected to perform faster.  

Measuring TMM Formation 
TMM formation is measured as a ratio of the number of TMM matrix elements for which the values 
are different from the initial values by the end of the simulation. At the start of the simulation, since 
each agent starts with a default value for each element in the matrix, the values in each element will 
change only if the agent has learnt it through social interactions and observations. Each value in the 
TMM matrix should proceed towards 0 or 1, that is, that another agent cannot or can complete a 
specified design task. 
For example, let there be 10 agents in the team and a total of 10 tasks to be performed by the team. In 
that case, the TMM is represented as a 10×10 matrix such that there are 100 elements in the TMM. 
When the simulation starts, all the elements have a default competence value=1/2 because there is an 
equal likelihood that a given agent may or may not be able to perform any of the given task. As the 
agents interact with and observe each other and the task, they learn about each others’ capabilities in 
the different tasks, and update the values of the corresponding elements in the TMM. By the end of the 
simulation, let us assume that 60 of these values were updated such that the value of each of these 60 
elements is different from 1/2. Thus, the TMM formation in this case is 60%. 
Each agent maintains a separate TMM, which it updates based on its own interactions and 
observations. Therefore, by the end of the simulation, it is expected that each agent’s TMM will be 



 

different. However, overlap and similarities across the TMM of the agents is likely. The overall TMM 
formation for the team is calculated as an average of the TMM formation for each agent in the team. 
For example, in a team of 10 Team agents, if 4 agents have 60% TMM formation, 4 agents have 40% 
TMM formation, and 2 agents have 50% TMM formation, then the overall TMM formation for the 
team is 50%. 

Overview of a simulation loop 
At the start of the task cycle, the client calls for a bid for the first task from all the agents. A single 
agent may have expertise in multiple tasks such that multiple agents may have expertise in the same 
task. Agents that can perform the “firstTask” bid to lead the task. The client shortlists those bids that 
are closest to its acceptable range of solutions. If more than one bid is shortlisted, a random bid is 
chosen from the shortlist, with the bidder as the Team Leader. Thereafter, the team coordinates the 
task allocation and handing as described in Section 3.3, until the project is completed.  
A single simulation run consists of two simulation rounds (1) training round and (2) test round. In the 
training round the agents start with default (experimenter-defined) values and none of the agents has 
any TMM formed at this stage. Once the training round is completed, the test round is run. All the 
agents carry over the TMM formed during the training round to the test round. The results from the 
training round are used to measure TMM formation. Measurement of team performance (team 
communication) is based on the results from the test round.  
The Simulation Controller is responsible for managing the simulation rounds and the number of 
simulation runs, which is 60 unless reported otherwise. Once the test round is complete, the 
Simulation Controller checks the number of pairs of simulation runs completed. If more simulation 
runs are required, all agents are reset to their default (user-defined) values and the next simulation run 
is activated. If the required number of simulations is completed, the simulation platform is shut down.  

Simulation of membership retention 
The level of membership retention is taken as the number of agents retained from the previous project 
such that if all the agents are the same in the training round and test round, the level of membership 
retention is 100%. If the membership retention is 100%, all the agents retain their TMM. If the 
membership retention is less than 100%, new agents are introduced into the team such that each new 
agent acquired in the team replaces an agent that was part of the training round. For example, let there 
be 10 agents, A1 to A10 that were part of the team in the training round. If the desired membership 
retention in the test round is 80% then the new team has 8 agents retained from the training round, and 
two new team agents, for example A3’ and A7’ such that they replace the other two agents, for example 
A3 and A7

While all new agents (i.e., A
, that were not retained from the training round. 

3’ and A7’) start with a default TMM, the agents retained from the training 
round (i.e., A1, A2, A4, A5, A6, A8, A9, and A10) reset their AMM of the agents that have been replaced 
(A3, A7) while retaining the AMM of the rest of the agents (i.e., A1, A2, A4, A5, A6, A8, A9, and A10). 
That is, the retained agents retain part of their TMM, while the other part that may not be useful (i.e., 
related to A3 and A7), is reset to default values (to be used for AMM of A3’ and A7’

Simulation of busyness levels 

).  

Busyness is implemented as the probability that an agent is not able to sense the observable data. 
Observable situations include interactions among other agents (IO) and task-performance by some 
other agent (TO). The busyness levels are varied in the training round itself and not in the test round. 
The effects of busyness on the level of TMM formation is measured in the training round. However, 
the effects of that busyness and resulting reduction in social learning during the training round needs 
to be observed in the test round, where the team’s performance is expected to have improved since the 
training round because of the social learning achieved and mediated by busyness in the training round.   

SUMMARY OF SIMULATION RESULTS  
Initial simulations were conducted with busyness levels=0 and membership retention=100% to 
understand the relative contributions of the different social learning modes, i.e., PI, IO and TO, to the 
team performance, Figure 1, and formation of TMM, Figure 2, across the three team structures. The 
team performances in Figure 1 are normalized such that the worst team performance (maximum 
number of messages) is considered 1. For each case, the normalized performance value is obtained by 



 

dividing this maximum value by the number of messages. For example, if the worst case has 147 
messages, and the best case has 32 messages, then the normalized performance for the best case is 
147/32. The three learning cases shown in Figure 1 and Figure 2 are: 
• PI+IO+TO: All three modes of social learning are available to the agents  
• PI+IO: None of agents can observe others perform the tasks. However, they can observe 

interactions among other agents if team structure conditions allow. 
• PI: All agents learn only from personal interactions.  

 
Figure 1. Effects of team structure and modes of learning on team performance 

 
Figure 2. Effects of team structure and modes of learning on TMM formation 

The simulation results suggest that both IO and TO contribute to team performance, Figure 1, as well 
as TMM formation, Figure 2. Across both measures, the contributions of TO are higher than IO. The 
differences across the learning cases are higher for TMM formation than it is for team performances. 
Thus, social observations contribute more to TMM formation than to team performance. 
TMM formation is much higher in flat teams, compared to distributed flat teams and functional teams. 
Since flat teams have no sub-groups or internal boundaries that obstruct social observations, all agents 
in the team have more opportunities to form their own TMM, collectively leading to a higher rate of 
increase in the overall TMM formation.  

Effects of busyness 
Busyness reduces the opportunities for social observation. Hence, the effects of the reduction in social 
observations due to higher busyness levels should be higher in flat teams, where the contributions of 
social observations to formation of TMM are higher, as compared to distributed flat teams and 
functional teams. Similarly, the effects of busyness should be higher on TMM formation as compared 
to the performance of the team. 
Figure 3 and Figure 4 show the effects of busyness on team performance and TMM formation 
respectively. The plots of team performance are shown in the negative so that an increasing number of 
communications results in a decrease in performance. These results are for experiments with 100% 
team member retention. A decrease in team performance and TMM formation with increase in 
busyness levels is observed across all team structures. However, the effects of busyness on team 
performance are marginal compared to the effects on TMM formation. As conjectured, the effects of 



 

busyness on TMM formation in flat teams are much higher than in the distributed teams or the 
functional teams, Figure 4.  

 
Figure 3. Effects of team structure and busyness levels on team performance  

 
Figure 4. Effects of team structure and busyness levels on TMM formation  

Effects of membership retention  
The increase in team performance with the increase in membership retention is higher for flat teams 
and distributed flat teams than that for the functional teams, Figure 5. In functional teams, even at 
lower levels of membership retention, which means lower pre-developed TMMs, the agents’ search 
space for the relevant task experts is narrowed within the corresponding task-group rather than the 
entire team. This smaller search space compared to the flat teams or distributed flat teams inherently 
reduces the effort in coordinating the tasks, giving functional teams an advantage in performance.  

 
Figure 5. Effects of membership retention and team structure on team performance 

In summary, team performance is higher if the teams are organized as functional teams, Figure 6, 
while TMM formation is higher in flat teams, Figure 7. For the same amount of TMM formation, 



 

teams in a flat structure will not perform as well as teams in a functional structure because of the 
larger search space for task coordination in flat teams. These results indicate, that although TMM 
quality and team performance are correlated [29], there is another effect of team structure that relates 
to the efficiency of TMM formation and its influence on team performance. Efficiency of TMM 
formation is a new measure introduced in this research to complement the existing measures of TMM 
quality, which include similarity, accuracy and density (amount) [6] [29]. 

 
Figure 6. Effects of membership retention (MR) and team structure on team performance 

 
Figure 7. Effects of busyness levels (BL) and team structure on TMM formation 

The differences in team performances across the different team structures becomes even more critical 
if the teams have lower levels of member retention, Figure 6. Thus, if the membership retention is low 
and team performance in terms of task coordination is the immediate goal, rather than team building, 
then a functional team structure is recommended. However, if the immediate goal is team building and 
developing a shared understanding across the team for future projects then flat teams are 
recommended.  

DISCUSSION AND CONCLUSIONS 
It may not be possible to develop strategies of teamwork that are equally applicable across all design 
teams. However, general recommendations and strategies can be applied based on specific project 
requirements and conditions. The findings reported in this paper are applicable to design teams 
working on routine tasks, where task coordination is the key performance criterion rather than the 
creativity or the quality of the design outcomes. Findings suggest that the increase in team 
performance with the increase in member retention is higher in flat teams compared to functional 
teams. Thus, in scenarios where team performance is critical but team retention is low (or personnel 
turnover is higher) functional teams are recommended. In scenarios where team building and TMM 
formation is the immediate project goal, the team can be initially organized as a flat team and then re-
grouped as functional teams in later phases. Results indicate that for the same amount of TMM 
formation, teams in a flat structure will not perform as well as teams in a functional structure. Thus, 
the efficiency of TMM formation in enhancing team performance is higher in functional teams. This 
claim and understanding of the efficiency of TMM formation needs further investigation.  
Team members should have higher social learning and observation opportunities, which mean 
collocated flat teams are more suited for team building projects. In addition, the workload distribution 



 

of team members should be managed to ensure sufficient opportunity for them to follow the team 
activities. Distributed flat teams constrained by other factors can reinforce the social interaction and 
observation opportunities through technological and communication media where all team 
communications, updates and activities are available to all the team members. Therefore, in distributed 
flat teams, how the team communication is organized and accessed will play a critical role in TMM 
formation.  In functional teams, the lack of social observations and interactions across the task-groups 
may create silos that are detrimental to the team when measured across other parameters not dealt with 
in this paper such as cohesion.  
To conclude, this paper discusses the effects of team structure on team performance and TMM 
formation based on simulation studies. The underlying assumptions in the model and the 
simplifications of the simulation scenarios resulting from controlled parameters need to be considered 
in interpreting the results. The study specifically focuses on routine design tasks, and the team 
performance is measured across a single dimension, i.e., the effectiveness of task coordination by the 
team members, measured in terms of the time taken for completing the task. However, design is often 
associated with creativity wherein it is not sufficient merely to know what others already know but to 
know what new knowledge is being generated. Other measures of team performance such as the 
novelty of the generated solutions, the number of different solutions generated, and so on might be 
more appropriate. Future work is needed to build on the existing computational model to include 
creative design tasks and simulate related situations. However, that remains a challenging task because 
computationally modelling tasks that are recognized as creative remains an open research issue. 
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