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ABSTRACT 
Equilibrium design is a class of problems where the design of complex systems is not directly 
controlled by designers but emerges from the self-interested decisions of stakeholders. While such 
problems have been common in economics and social sciences, they have not yet been addressed in 
engineering design. This is because the focus in engineering design is on technical performance with 
the assumption that designers directly control the design space. However, with the increasingly 
interconnected nature of the technical, social, economic and environmental aspects, equilibrium design 
problems become more important for designers. Instead of solving a specific equilibrium design 
problem, the goals in this paper are to highlight the importance and uniqueness of this class of 
problems and to present a general formulation within engineering design context. Specifically, we 
present a general formulation using concepts from non-cooperative game theory, mathematical tools 
for solving them, and various example problems relevant to engineering design that can be modeled as 
equilibrium design problems. 
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1 INTRODUCTION 

How can we design large-scale complex systems whose structures and behaviors are not directly 
controlled by designers, but emerge dynamically from the local decisions and self-organization of 
individual entities? This question has been central to many parts of economics and social sciences. The 
design of markets, mechanisms, auctions, and organizations, all deal with essentially the same 
question. Increasingly, this question is also becoming relevant for engineering designers dealing with 
large-scale complex systems that involve technical, social, economic, and environmental aspects. 
Traditionally, engineering design research has primarily been focused on systems whose design space 
is directly in control of the designers. However, there is an increasing importance of complex systems 
that are not designed, but emerge out of the individual decisions of different stakeholders. A prime 
example of such systems is the Internet which has evolved as a result of independent decisions of 
multiple stakeholders. Other examples include traffic systems, peer-to-peer networks, and 
communication networks. The key characteristic of such systems is that the overall performance is 
dependent on the design, which in turn is dependent on decisions made by individual decision-makers. 
The design (and hence, performance) of such systems can be directed by affecting the decisions of the 
individual stakeholders through different mechanisms such as the provision of incentives. 
The natural framework for analyzing systems that involve multiple decision-makers is non-
cooperative game theory [1]. Non-cooperative games have been used in engineering design, primarily 
as a way to represent decentralized design scenarios [2, 3] where designers are modeled as decision-
makers. Decentralized design is characterized by four conditions [3]: a) designers have knowledge of 
only their own local objectives, b) designers act unilaterally to minimize their objective function, c) 
designers have complete control over specific local design variables, and d) designers communicate by 
sharing the current value of their local design variables. The decisions are in equilibrium if none of the 
designers can unilaterally improve their payoff by changing their own decisions. This equilibrium is 
referred to as the Nash Equilibrium. Current research on non-cooperative game theory in engineering 
design is focused on identifying the Nash equilibrium and its stability properties. However, the goal 
from a systems design standpoint is to achieve desired system performance by influencing stakeholder 
decisions. We refer to the corresponding problem as the “equilibrium design problem” in this paper. 



The goals of this paper are three fold: 1) to define the equilibrium design problem, 2) to discuss 
mathematical tools that can be used for solving equilibrium design problems, and 3) to discuss various 
problems in engineering design that can be modeled as equilibrium design problems. The organization 
of the paper is as follows. In Section 2 we provide a background on non-cooperative game theory and 
the concepts of equilibrium in games. The general equilibrium design problem is formulated in 
Section 3. Two mathematical tools for solving the equilibrium design problem are discussed in Section 
4. Examples of problems in engineering systems design that can be formulated as equilibrium design 
problems are discussed in Section 5. Closing thoughts are presented in Section 6. 

2 BACKGROUND: NON-COOPERATIVE GAMES AND EQUILIBRIA 

2.1 A Brief Overview of Non-Cooperative Games 
In game theory, non-cooperative games [1] are models of situations where individuals make 
independent decisions without collaboration or communication. The individuals are referred to as 
players whose decisions may affect each other. A non-cooperative game consists of n players; each 
player has a finite set Si of pure strategies. A combination of all the strategies of players in the product 
space S = S1 X S2 X … X Sn is called the strategy profile of the game. Corresponding to each player i, 
there is a payoff function, pi

At the core of non-cooperative games is the concept of equilibrium. A set of strategies is in 
equilibrium if no player has an incentive to unilaterally change the strategy. Mathematically, a strategy 
profile s* ∈ S is a Nash equilibrium if  

, which maps the player’s strategies to real numbers. The payoffs capture 
the preferences of decision makers, with higher payoffs being more preferable to lower payoffs. In the 
literature on decision-making, payoffs are commonly represented as utility functions [4]. A mixed-
strategy of player i is a probability distribution over the player’s pure strategies.  

 (1) 
where p(si, s-i*) represents a change in player i’s strategy from si* to si

2.2 Challenges Associated with Nash Equilibria 

, while keeping all other 
players’ strategies the same. The equilibrium is called strict Nash equilibrium if the symbol ≥ is 
replaced with > in equation (1). Nash equilibrium can be defined either for pure strategies or for mixed 
strategies. Nash proved that every finite game has at least one mixed-strategy Nash equilibrium [1]. A 
game can have multiple Nash equilibria.  

Nash equilibrium is only one type of equilibrium for non-cooperative games. A generalization, 
referred to as correlated equilibrium was first suggested by Aumann [5]. In this case, the players 
choose their strategies based on a public signal from a trusted party. The trusted party chooses a 
strategy profile according to a probability distribution and informs it to the corresponding players. 
Individual players choose their strategies based on this information. If no player has an incentive to 
unilaterally deviate from his/her strategy, then the strategy set is called a correlated equilibrium. The 
advantages are that correlated equilibria always exist for finite games [6], they may be more efficient 
than Nash equilibria [7], and unlike Nash equilibria they can be efficiently computed and learnt [8, 9].  
Despite the generality of the concept of correlated equilibrium, the concept of Nash equilibrium is 
used as the standard notion of equilibrium. Papadimitriou and Roughgarden [10] suggest that this is 
because “everybody uses it,” it is used as a baseline for refinements and generalizations (such as the 
correlated equilibrium), and it is an open computational problem in computational game theory. 
Hence, in this paper, we focus on the Nash equilibrium to illustrate the problem of designing equilibria 
in decentralized systems design.  
One of the key challenges in non-cooperative game theory is the complexity of finding Nash equilibria. 
Nash [1] commented that “The complexity of the mathematical work needed for a complete 
investigation increases rather rapidly…” Even with the developments in computers during the past 60 
years, calculating Nash equilibria is still challenging. Various algorithms have been proposed for 
finding Nash equilibria but none of them is known to run in polynomial time [11]. Recently, the 
computational complexity of the problem of calculating Nash equilibria, even for a two player game, 
is classified as PPAD (Polynomial Parity Arguments on Directed graphs) complete [11-13]
The second challenge is related to the dynamics of the processes leading to the equilibria [14]. The 
dynamics refers to the sequence of decisions made by individual players in response to the decisions 

. 



made by preceding players. Arguably the simplest and the most popular game dynamics is the “best 
response” (BR) dynamics [15] where at a given time, a small portion of players adjust their strategy to 
a strategy that is the best response to the current strategy of the other players. Other types of dynamics 
are also studied in the literature where the players anticipate future strategies of other players and 
respond accordingly. Convergence to an equilibrium depends on a) the game (i.e., the payoff functions 
of the individuals), and b) the dynamic process. Not all dynamic processes for a game converge to 
Nash equilibria. Similarly, a given dynamic process may or may not converge depending on the game. 
General results on the convergence of dynamics to Nash equilibria are available only for a small class 
of games. It has been shown that for a class of games called potential games [16] simple dynamics 
such as best response are guaranteed to converge to a Nash equilibrium. The rate of convergence and 
the dynamic stability of the equilibria are other related issues. 
The third major challenge is related to the inefficiency of equilibria [17]. The prisoner’s dilemma is a 
well-known example illustrating that the equilibrium achieved by the decentralized decisions of 
players may be less than the socially optimal solution that can be achieved by a central authority. The 
most commonly used notion of optimality is Pareto optimality. A set of strategies is Pareto optimal if 
it is impossible to strictly increase the payoff of a player without strictly decreasing the payoff of 
another player. The extent of inefficiency of the equilibria can be measured using measures such as a) 
the price of anarchy, and b) the price of stability. The price of anarchy is the ratio between the worst 
objective function of the equilibrium and that of an optimal outcome. On the other hand, the price of 
stability is the ratio of the best objective function value to that of an optimal outcome. Hence, price of 
anarchy is based on a pessimistic view whereas the price of stability is based on an optimistic view. 
As a summary, the key challenges associated with equilibria in non-cooperative games are: a) 
efficiently determining the Nash equilibrium points, b) ensuring that the dynamics converges to the 
Nash equilibria, and c) ensuring that the Nash equilibria are closer to the efficient solutions. 

2.3 Illustrative Example 
In this section, a simple example with two designers (players), each with an objective function, is 
presented to illustrate the concept of Nash equilibrium. Consider two designers with payoff functions 
F1 and F2 Table 1 as shown in . The payoff functions are polynomials in two variables x1 and x2. The 
strategy set is determined by the values of the design variables that each designer can control. The two 
designers are responsible for different variables; the first designer can choose values for x1 and the 
second designer can choose the values for x2. The strategy set for the first designer is x1 = [0 1] and the 
strategy set for the second designer is x2 

Table 1- Payoff functions and strategy sets of the two designers in the illustrative example 

= [0 1]. 

Designer 1 Designer 2 
Payoff Function: Maximize: F1 = x1x2 – x1

3

Strategy set: x
  

1 

Payoff Function: Maximize: F
= [0 1]  

2 = x1x2  – x2
3

Strategy set: x
  

2 = [0 1]  
The strategy of each designer is to choose the 
values of corresponding design variables such 
that their payoffs are maximized for a given 
value of the design variable chosen by the 
other designer. This is referred to as the “best 
response” to the other designer’s strategy. 
Hence, based on the first order optimality 
condition, Designer 1 chooses x1 for a given 

value of x2 such that  and Designer 2 

chooses x2 such that .  The strategy 
profiles corresponding to these optimality 
conditions are referred to as the Best Response 
Correspondences (BRCs) of the designers. The 
BRCs for the example problem are shown in 
Figure 1. The points of intersection of the 
BRCs for the two designers are the Nash 
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Figure 1 - Best response correspondence and Nash 

equilibria for the illustrative example 



equilibria for the game. In the illustrative example, there are two Nash equilibria: (x1, x2

If the designers sequentially choose the best response to the other designer, the dynamics is termed as 
a best response dynamics. The best response dynamic can be represented using the following iterated 

map: 

) = (0, 0) and 
(1/3, 1/3). 

. The iterated map may or may not converge to the Nash 
equilibrium. In Figure 1, it is shown that starting from an initial point (x1 = x2 = 0.1) the iterated map 
converges to one of the Nash equilibria: (x1, x2

3 EQUILIBRIUM DESIGN PROBLEM IN NON-COOPERATIVE GAMES 

) = (1/3, 1/3). The Pareto optimal solutions for the 
game are shown in the figure. At these points none of the designers can improve their payoff without 
adversely affecting the other player’s payoff. Comparing the Nash equilibria with the Pareto solutions, 
it is observed that the Nash equilibrium (1/3, 1/3) is closer to the Pareto frontier. 

The discussion in the previous section is focused on a set of fixed equilibrium points. Now consider a 
scenario where it is possible to modify the individual designers’ payoffs through some incentives. In 
such cases, the individuals’ strategies vary based on the payoffs. Hence, the corresponding Nash 
equilibria also change. The new Nash equilibria may have different efficiency (price of anarchy and 
price of stability), convergence, and stability characteristics compared to the original equilibria. By 
appropriately choosing the incentives to modify the designers’ payoffs, the resulting Nash equilibria 
can be designed to possess the desired characteristics. This design problem is referred to as the 
equilibrium design problem. The higher level authority that has the power to provide incentives to 
modify individual payoffs is referred to as a “game designer.” 
For illustrative purposes, we extend the example from Section 2.3 to an equilibrium design problem. 
Assume that the payoff functions of the two designers contain parameters c1 and c2 that can be 
selected by the game designer (see Table 2). The ranges of these parameters are c1 = [0 3], c2 = [0 3]. 
For c1 = c2 = 1, the payoffs are similar to the previously discussed scenario. The best response 
strategies of the two designers for different values of the parameters are shown in Figure 2. The 
intersection of the best response correspondence of the two designers for different combinations of c1 
and c2

Table 2- Modified objective functions of the two designers 

 are shown in Figure 3. Each intersection point corresponds to a combination of the parameters. 
The region highlighted in the figure is the sub-space of the joint strategy space where each point can 
be achieved as Nash equilibrium by choosing appropriate values of the parameters. We refer to this 
region as the Nash feasible space of the equilibrium problem. This notion is similar to the notion of 
feasible space in optimization problems because no point outside this space can be achieved as Nash 
equilibrium. 

Designer 1 Designer 2 
Objective Function: Maximize: F1 = c1x1x2 – x1
Strategy set: x

3 
1 

Objective Function: Maximize: F
= [0 1] 

2 = c2x1x2  – x2
Strategy set: x

3 
2 = [0 1] 
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Figure 2 – The set of BRCs of the two designers (left: Designer 1 and right: Designer 2) 

 



Based on the discussion in the previous section, the desired properties of the designed Nash 
equilibrium, and hence the goals for the equilibrium design problems are: 
1. Closeness to the best solution: The Nash 
equilibrium should be close to the best possible 
(efficient) solution. The goodness of the solution 
can be defined in various different ways. Pareto 
efficiency, discussed in Section 2.2, is one of the 
most widely used concepts for quantifying the 
goodness of a solution in a decentralized 
system. If Pareto efficiency is used to define the 
ideal solution, the price of stability of the Nash 
equilibrium should be as close to 1 as possible. 
However, it is important to recognize that there 
are other ways of defining efficiency. 
Researchers in economics have proposed 
concepts such as Kaldor-Hicks efficiency, X-
efficiency, allocative efficiency, distributive 
efficiency, dynamic efficiency, and productive 
efficiency. All of these notions of efficiency 
relate the individual preferences to the overall performance of the social system. Within systems 
design, the system level goal may or may not correspond to the efficiency of the solution (further 
discussed in Section 5.1). Hence, we do not limit ourselves to the notion of Pareto efficiency because 
within systems design, the quality of the solution may be dictated by system-level goals. 
2. Convergence of the equilibrium: The dynamics of information exchange and decision making plays 
a significant role in the equilibrium design problems. There are various dynamic processes, the best 
response correspondence being the simplest one. Ideally, the dynamics of the process should result in 
the convergence of the solution to Nash equilibrium. However, it has been shown that depending on 
the problem, the dynamic processes may or may not converge. Additionally, for problems with 
multiple equilibria (as in Section 2.3), the process should converge to the one closer to the desired 
solution. Hence, achieving the convergence properties is an essential goal for the equilibrium design 
problems. 
3. Stability of the equilibrium: The Nash equilibrium should be stable, i.e., small perturbations should 
not result in divergence from the equilibrium. Further details on stability are provided in Section 4.2. 
As a summary, an equilibrium design problem can be defined by decision makers, their strategy space, 
individual payoffs, system-level goals, dynamic processes, and ways in which individual payoffs can 
be modified to affect the equilibrium and its characteristics (closeness to the best solution, 
convergence, and stability). 

4 MATHEMATICAL TOOLS FOR EQUILIBRIUM DESIGN PROBLEMS 

Having identified the key characteristics of an equilibrium design problem, the key question is: How 
can the equilibrium design problem be systematically formulated and solved? In this section, we 
discuss two tools, one from optimization theory and another from non-linear control theory that can be 
used as foundations for formulating and solving equilibrium design problems. In Section 4.1, we 
discuss mathematical programming with equilibrium constraints (MPEC) for finding the location of 
the best equilibria, and in Section 4.2 we discuss Lyapunov stability theory for assessing the stability 
and convergence characteristics of the equilibria. 

4.1 Mathematical Programming with Equilibrium Constraints (MPEC) 
The MPEC is a type of constrained nonlinear programming problem where some of the constraints are 
defined as parametric variational inequality or complementarity system [18]. These constraints arise 
from some equilibrium condition within the system, and hence, are called equilibrium constraints. 
MPEC is a special type of bi-level programming problems [19] consisting of a higher level 
optimization problem, whose constraints are defined in terms of solutions to lower-level optimization 
problems. MPEC is applicable to a variety of problems in engineering such as optimal design of 
mechanical structures, network design, motion planning of robots, and facility location and 
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production. MPEC is also used to study equilibrium problems in economics. MPEC is closely related 
to the Stackelberg game [20] where a leader makes a decision first and then the followers make their 
decisions based on the leader’s decision. The leader corresponds to the upper-level optimization 
problem in MPEC and the followers correspond to the lower-level problems. Examples of problems of 
economic equilibrium where MPEC has been used include maximizing revenue from tolls on a traffic 
system, optimal taxation, and demand adjustment problems. 
Mathematically, a MPEC problem can be represented using two sets of variables,  and 

. Here, x belongs to the upper-level problem and y solves the lower-level equilibrium 
problem. The solution of y depends on the value of x chosen for the upper-level problem. The overall 
objective function f(x,y) is minimized. 

 
Subject to: , and  

(2) 

(3) 
where Ω is the joint feasible region of x and y; and S(x) is a set of variational inequalities that represent 
the equilibrium problem. In the case of the equilibrium design problem discussed in Section 3, the set 
x is the set of parameters c1 and c2 affecting the individual payoffs and controlled by the game 
designer. Based on the values of these parameters, the players determine their best responses to the 
other players. Hence, the variables x1 and x2

The set S(x) corresponds to the feasible Nash space. As discussed earlier, the Nash equilibrium 
corresponds to the best response of each designer to the decisions made by other designers. The Nash 
equilibrium point can be formulated as a variational inequality using the first order necessary 
conditions for optimality such as Karush–Kuhn–Tucker (KKT) conditions [21]. Having formulated the 
equilibrium design problem as a MPEC, the next step is to solve it. Solving the  MPEC problems is 
challenging because of the non-linearities in the problem, non-convex feasible space, combinatorial 
nature of constraints, disjointed feasible space, and multi-valued nature of the lower equilibrium 
problem [18]. There has been some progress in developing efficient algorithms for solving MPEC 
problems. Examples include variations of NLP algorithms, and interior point algorithms [22]. 

 in Section 3 correspond to the variable y in the MPEC 
formulation above. The intersection of the best responses is the Nash equilibrium point. Here, the 
function f(x,y) represents a system-level function that quantifies the goodness of the solution (as 
defined in Section 3). 

As a summary, MPEC can be used as a mathematical tool to model equilibrium design problems. We 
discussed how the formulation can be used to account for the goodness of the Nash equilibrium. 
MPEC results in the best Nash Equilibrium. However, this only addresses the first requirement listed 
in Section 3. It does not account for the dynamics of the problem. The solution does not provide any 
insight into the convergence and stability of the equilibrium. To address this limitation, we utilize 
some of the tools from non-linear control theory. We specifically focus on the Lyapunov stability 
theory in the next section. 

4.2 Lyapunov Stability Theory 
In Section 2.3, we illustrate how the best response dynamics can be modeled as an iterative map where 
the values of the variables during some iteration are given in terms of the values in the previous 
iteration. This represents a dynamic system for which the stability characteristics of the equilibrium 
points can be evaluated using the Lyapunov Stability Theory [23]. For nonlinear systems, various 
notions of stability have been developed. These include Lyapunov stability, asymptotic stability, 
exponential stability, and global asymptotic stability. Lyapunov stability means that trajectories in the 
phase space starting at two points close to equilibrium will stay sufficiently close to it. Asymptotic 
stability is a stronger notion of stability where in addition to Lyapunov stability the trajectories starting 
close to the equilibrium also converge to the equilibrium as time goes to infinity. An equilibrium point 
is exponentially stable if the trajectories converge to the origin faster than an exponential function. 
The Lyapunov theory consists of a direct method and an indirect method for evaluating the stability of 
nonlinear dynamic systems. In the indirect method, the nonlinear system is approximated as a linear 
system near the equilibrium points and the stability of the linear system is determined. For a nonlinear 
system in the state space representation   where xi is a state variable, then 
the equilibrium point is given by . If the equilibrium is at the origin, the 



stability can be determined from the eigenvalues of the Jacobian matrix   where F is the set 
of functions fi and X is the set of state variables xi. If all the eigenvalues are negative, then the system 
is stable. If at least one of the eigenvalues is positive, then the system is unstable. In contrast to the 
indirect method, the direct method accounts for the nonlinearities in the system using the notion of a 
Lyapunov function. For a system, if there is a positive-definite function of state variables which 
decreases along all state trajectories, the system is stable. That function is called a Lyapunov function 
of the system. A system can have more than one Lyapunov function. The key challenge in using the 
direct method is that there is no general method to find the Lyapunov function for a system. It requires 
intuition and trial-and-error. In the case of iterated maps, which are discrete-time systems, the concept 
of Lyapunov exponents is used to determine stability of a system. Assuming that two trajectories start 
at nearby points x0 and (x0 +  δ0). Then, the separation between the two points after n iterates is   

. The equilibrium point is stable if λ < 0. As elaborated by Strogatz [24], the Lyapunov 
exponent for a system trajectory starting at x0 is: 

 
(4) 

In order to incorporate stability as an integral part of the solution of the equilibrium design problem 
the Lyapunov stability criteria need to be integrated within the MPEC framework. One possibility is to 
develop constraints on the eigenvalues and to integrate them as constraints within the MPEC. Another 
potential approach is to determine a set of good solutions from MPEC and then to perform stability 
analysis to determine the best solution from the stability standpoint. The third approach is to determine 
basins of attraction within the design space and then use them as a feasible design space for the 
MPEC. Currently, there is a lack of methods that account for both stability and efficiency in an 
integrated manner for the equilibrium design problems. Further investigation is necessary.  

5 EQUILIBRIUM DESIGN PROBLEMS WITHIN ENGINEERING DESIGN 

The equilibrium design problem can be found in various problems related to engineering design. In 
this section, we discuss some classes of problems that have equilibrium design at their core. All of 
these classes of problems can be viewed from a collective systems perspective and it is possible to 
modify individual preferences through the provision of incentives. An overview of the characteristics 
of the problems is provided in Table 3.  

Table 3 - Overview of the classes of equilibrium design problems in engineering design 

 Decision Makers Individual 
Preferences 

System-level 
goals Dynamic Processes 

Mechanisms for 
equilibrium 

design 
Requirements 
allocation 

Designers working 
on different aspects 
of the system 

Subsystem goals System-level 
design goals 

Updating individual 
decisions based on 
others’ decisions 

Requirements 
decomposition 
and targets 

Evolutionary 
networks 

Entities making 
decisions about 
linking with 
different nodes 

Payoffs for 
individuals are 
network 
dependent 

Performance of 
the network 

 Addition and removal 
of nodes and links 

Incentives to 
individuals to 
affect linking 
behaviors 

Collective 
Innovation 

Individuals 
participating in 
collective 
innovation projects 

Satisfying 
intrinsic and 
extrinsic needs 

Development 
of the entire 
project 

Self-organization of 
communities and 
growth of products 

Incentives to 
individuals to 
participate in 
different activities 

Decentralized 
Energy 

Individual 
consumers 

Minimize cost of 
owning and 
operating energy 
resources 

Technical, 
Economic, 
Environmental, 
Social 

Market processes of 
purchasing and selling 
energy 

Taxes, incentives, 
laws, market rules 

5.1 Requirements allocation in decentralized design 
Requirements allocation, as used in systems engineering, is the process of decomposing system-level 
requirements into requirements for lower-level subsystems and components. Requirements allocation 
is a part of the requirements-engineering process. There are two types of requirements at the system 
level – a) requirements that can be directly assigned to individual subsystems and components, and b) 
requirements that need to be divided among multiple components. An example of the former type of 



requirements for an automotive system is “provide energy” which can be fulfilled by a lower level 
subsystem such as an “engine”. An example of the latter type is “weight should be lower than 10,000 
kg” which can be divided into upper bounds of weights for individual systems. Such requirements are 
also referred to as allocable requirements. Here, weight is a system attribute which is a function of 
attributes of the components. Collopy [25] refers to these attributes as extrinsic attributes. Other 
examples of extrinsic attributes are cost, efficiency, and reliability. 
The performance of the overall system is dependent on the allocation of requirements. Hence, the 
requirements allocation should be such that it maximizes the overall system performance. 
Traditionally, requirements allocation has been carried out by system designers based on their insights 
and the knowledge from prior systems. The effect of alternate requirements allocations on the system 
performance is rarely considered. The requirements allocation problem can be modeled from two 
different perspectives: optimization and non-cooperative game theory, as discussed next. 
Optimization Perspective: Consider a single organization representing a completely collaborative 
scenario where the goals of all designers are to achieve the system-level objectives, and information 
can be freely shared among them at any stage during the design process. In such a scenario, the 
requirements allocation problem involves finding the best decomposition of requirements for extrinsic 
attributes. From an optimization perspective, the widely utilized approach for requirements allocation 
is to determine lower and upper bounds for the extrinsic attributes for subsystems. These bounds are 
such that if all the lower-level designers designed their subsystems to satisfy their corresponding 
bounds, the system level requirements are automatically satisfied. The bounds are used as constraints 
in sub-system level design problems. Collopy argues that using requirements for extrinsic attributes as 
constraints for subsystems and components results in inferior systems as compared to using them as 
parts of objective functions [25]. Whether the requirements are modeled as constraints or parts of 
objective functions, existing multi-disciplinary optimization approaches such as collaborative 
optimization [26], analytical target cascading [27], etc. can be used to model the scenario.  
Non-cooperative Game Perspective: Consider another scenario of systems design carried out by 
multiple distributed entities (e.g., organizations or teams) where each entity has its own underlying 
goals and there are barriers (both organizational and technical) to complete information exchange 
throughout the design process. This scenario is representative of many complex automotive and 
aerospace systems designed by multiple organizations. Due to the limited information flow between 
designers, the resulting solution is equilibrium. Here, requirements allocation modifies individual 
payoffs and hence, acts as a way of modifying the equilibrium. In such a scenario, the requirements 
allocation problem can be modeled as an equilibrium design problem. The systems designer’s decision 
is to determine the best allocation of requirements such that when the individual designers make their 
decisions, the equilibrium is close to the desired solution. The approaches discussed in Sections 4.1 
and 4.2 can be used to model the equilibrium design problem. Each equilibrium design problem has 
unique challenges. One of the challenges is the lack of detailed models of individual subsystems 
before the systems are designed. Without the availability of these subsystem models, it is challenging 
to model the impact of alternate ways of requirements allocation on the equilibrium and its properties. 

5.2 Design of complex evolutionary networks 
Recently a number of large-scale complex networks have been identified whose structures are not 
directly controlled by designers, but emerge dynamically from the local decisions and self-
organization of individual entities. A prime example of such a network is the Internet, whose structure 
is a result of individual connection decisions made by individual entities. The overall topology of the 
Internet affects its reliability, the effectiveness of search, etc. The Internet is just one example of such 
networks. Other examples include social networks, ad hoc networks, trade networks etc. All of these 
networks are similar in the sense that: a) the topology is a result of local behaviors, and b) the topology 
has a significant effect on their performance. Such networks are also referred to as endogenous 
networks [28]. The system-level objective is to guide the evolution of such networks towards desired 
structures with desired behaviors and performance. 
Existing approaches for network design are focused on centralized network design applied to networks 
such as transportation [29]. In these problems, the design variables are nodes and links, and the 
objectives are minimization of the cost of transportation, minimization of the distance travelled, etc. 
On the other hand, the design of complex evolutionary networks is governed by individual decisions 
which can be modified by providing incentives. The individual decisions are also based on the 



decisions made by decision makers. Hence, the decisions can be modeled as equilibrium problems. 
The individual decisions affect the formation of nodes and links, thereby affecting the network 
structure, and hence, the network performance. The goal is to maximize the performance of the overall 
network. For example, one of the performance goals for the Internet is to maximize the effectiveness 
of search. Hence, the design problem in such evolutionary networks is fundamentally different from 
traditional network design, and is more appropriately represented as an equilibrium design problem. 
The challenge associated with such problems is the presence of large and discrete design spaces. 

5.3 Collective Innovation 
Collective innovation is an emerging paradigm in product realization where complex systems are 
developed in a bottom-up manner by communities of independent individuals, as opposed to 
hierarchical organizations. The paradigm is epitomized by successful examples from open-source 
software development (e.g., Linux, Apache), crowdsourcing (e.g., Innocentive), and open 
encyclopedias (e.g., Wikipedia). The fundamental difference between traditional product realization 
processes and collective innovation processes is that the former are based on top-down decomposition 
and structured task assignment while the latter are based on self-organization of individually 
motivated participants into communities. The participants’ contributions are not based on the pre-
specified tasks, and the product evolves over time based on the contributions of the participants [30]. 
Collective innovation can be viewed from a complex systems perspective where individuals are 
decision makers with their own preferences, needs, and capabilities. The individual goals can range 
from enjoyment-based or community-based intrinsic motivation to extrinsic motivations such as career 
advancement and skill improvement [31]. Based on their interests and competencies, individuals make 
decisions such as whether to participate or not, which project to participate on, and whom to 
collaborate with. They self-select (or define) the activities they would like to participate in. Individuals 
interact with each other in two ways – directly and indirectly. The direct interactions are through one-
on-one discussions, online forums, and other web-based mechanisms.  The indirect interactions are 
mediated through the product structure, which is an essential aspect of the environment. Based on 
these decisions and interactions, the product evolves. At the same time, as the individuals decide to 
collaborate with each other on different tasks, the community structure also grows with time.  
Panchal et al. [32] highlight that due to the interdependencies between different product modules, the 
product sequence in which they are developed has an impact on the growth rate of the product. The 
modules on which other modules depend should be developed first. In addition to the dependencies 
between modules, both the product structure and the community structure are also interdependent [32]. 
The growth of communities affects the way in which products evolve and the growth of products 
affect the evolution of communities. Some product structures and community structures are better than 
others in terms of collective innovation [33]. If the system-level goal is rapid growth of the product 
being designed, collective innovation is also associated with an equilibrium design problem. The 
individual behaviors can be modified by providing different types of incentives (such as awards and 
recognition). As the individuals make decisions to participate on different activities, the equilibrium 
design problem is to determine the incentives that can be provided to them at different points in time 
to participate on appropriate modules at appropriate time. Through a systematic design of the incentive 
structure, the dynamics of collective innovation processes can be directed towards faster growth and 
the achievement of targeted structures of products and communities. 

5.4 Decentralized energy 
The current energy infrastructure in the United States (and most other countries around the world) is 
primarily based on a centralized model of energy generation and distribution. The centralized energy 
model is characterized by large-scale power plants from which energy is distributed to the consumers 
through a centrally controlled network of cables. While the centralized energy model has been used for 
over two centuries, it has a number of limitations – a) waste of energy, b) large transmission losses, c) 
expensive distribution infrastructure, d) low resilience to failure, and e) impacts on the environment 
[34]. With the increasing use of small-scale energy generation from renewable sources and increasing 
deregulation of the energy sector, an alternative paradigm of energy generation and distribution is 
emerging. It is called decentralized energy and consists of distributed generation resources [34]. It is 
believed that decentralized energy can address the limitations of centralized energy. Since energy is 



generated closer to the consumers, the waste heat generated in the process can be used for space 
heating purposes. Since the energy does not need to be transmitted over long distances, the 
transmission losses are lower. Further, the cost of distribution infrastructure is lower. However, 
decentralized energy is faced with challenges such as poor control on the power quality due to the 
intermittency of renewable energy sources. 
Energy infrastructure is associated with multiple levels of decisions such as network reconfiguration, 
service restoration, operation planning, and expansion planning [35]. These decision problems vary in 
their objectives and time horizons. The optimal network reconfiguration is an operation-related 
problem of finding the branches of the network to be opened to supply the loads with minimum energy 
losses. Optimal service restoration involves identifying the best strategy to meet the demands after a 
fault to minimize the effect of fault propagation. Operation planning involves choosing the optimum 
structural changes considering a constant load in the network. Expansion planning involves deciding 
how to grow the network considering future changes in demand. The timescale considered for 
expansion planning is about 20 years. 
Within a centralized energy paradigm, all these decisions are made by central authorities who are in-
charge of the infrastructure. However, in a decentralized infrastructure, the fundamental difference is 
that different stakeholders make their own decisions and the overall system-level performance is 
dependent on the individual decisions. For example, the consumers play an active role by acting as 
producers. They make their own decisions on a) which technologies to invest in, b) how much energy 
to generate, c) how much energy to buy and from whom, and d) how much energy to sell  [36]. Other 
stakeholders include power producers (e.g., utility companies), grid operators, and regulators (e.g., 
government and other regulating authorities). The decisions made by different stakeholders are often 
conflicting. For example, consumers’ decisions are often driven by economic aspects such as 
minimizing their energy costs. In addition to economic objectives, other objectives such as technical, 
environmental and social objectives are also important from a systems level. Technical objectives 
include minimum system losses, voltage stability, unbalance conditions, power quality, and energy 
needs. Environmental objectives include minimization of emissions and hazardous materials. Social 
objectives include fairness and quality of life.  
Based on the decisions made by the individual stakeholders, the system reaches an equilibrium point 
which defines its overall behavior. The individual decisions can be directed through a number of 
mechanisms such as policy tools, incentives (e.g., tax breaks), penalties (e.g., tariffs), markets rules, 
and laws. The corresponding equilibria can be changed through these mechanisms. Hence, the 
decisions within decentralized energy can be modeled as an equilibrium design problem. The 
decisions of the policy makers can be represented as the higher-level optimization problem and the 
decisions of the individual consumers can be represented as lower-level equilibrium problem. 

5.5 Other problems 
There are various other examples of systems with similar structure. The sustainability standards 
development process such as LEED is a natural example of equilibrium design problem. The standards 
influence the design decisions made by architects and material decisions by builders. By appropriately 
choosing the standards, the decisions can be directed towards better environmental performance. 
Similarly, most of the problems that relate to policy design, determination of the right amount of taxes 
(e.g., carbon tax) are also equilibrium design problems. 

6 CLOSING COMMENTS 

As the scope of problems considered by engineering design researchers is extended beyond just 
technical design to include broader aspects such as organizational design, policy, and economics, the 
equilibrium design problem becomes pervasive. The first step towards addressing these challenges is 
to recognize the common structure of all these problems and the existence of tools in different fields 
that can be used to address some of the associated challenges. That is the primary goal of this paper.  
Traditionally, problems related to equilibrium design are studied in economics, social sciences, and 
computer science. Specifically, the field of mechanism design [37] within economics deals with the 
“design of games” with desired outcomes. Design of multi-agent systems [38] involves designing the 
behaviors of individual decision-making agents to achieve the desired system-level behaviors. In this 



paper, we show that equilibrium design problems are also central to engineering systems design and 
hence, needs attention from the engineering design community.  
Equilibrium design problems are complex in nature. One of the key challenges is the multi-objective 
nature of desired system-level outcome. Different problems are associated with unique challenges that 
require different ways of addressing them. As discussed in Section 5, equilibrium design problems in 
requirements allocation are challenging due to the lack of subsystem models before they are designed. 
The problems in evolutionary networks are challenging due to discrete and vast design spaces. There 
are various opportunities for research in addressing such challenges in specific classes of problems. 
Additionally, the classes of problems discussed in the paper are only representative examples of 
equilibrium design problems based on the author’s own research. Many more such problems can be 
identified.  
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