
 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 05 MELBOURNE, AUGUST 15-18, 2005

SUPPORTING THE RAPID PRODUCT DEVELOPMENT REQUIRMENTS
BY A VIABLE SOFTWARE ARCHITECTURE

Emil Stoyanov, Stavros Dalakakis, Dieter Roller, Markus Wischy

Keywords: Rapid Product Development, Product Development Systems, Product Life Cycle,
Self-managed Systems, Adaptive Software Architecture, Viable Systems Model

1 Introduction
The Rapid Product Development (RPD) as a technique for design of innovative products is
characterized by interaction of development teams distributed in time and space, with
different responsibilities, background in various domains, by fast reaction to market changes
and by coordination of necessary actions for every development phase between these groups.
Nowadays product development is influenced from information technology and informatics
with their respective fields of distributed systems, knowledge representation and agent
technology. Major challenge in product development systems is the selection of an adequate
representation form of knowledge presentation together with the mechanisms for its
communication and control. We designed a system architecture, characterized by its
integrative and holistic approach, for supporting the domain of RPD. As a promising way for
solving problems related to separation of services, finding an intelligent solution and
synchronization of design teams we apply a multi-agent system (MAS) as a middleware to an
Active Semantic Network (ASN) as a knowledge representation model.

1.1 Motivation
RPD meets the growing problem of increasing complexity in handling product development
support systems, knowledge integration and coordination of parallel processes. As a result
from the extended impact of the global networking it is compulsory for a system to have a
distributed character. This is usually achieved by development of approaches based on
loosely-coupled components, transactional mechanisms supporting remote team cooperation
and ad-hoc functionality. With increase of a system's scope of application, its shared
resources and access interfaces, handling of quality assurance assets such as stability and
optimization takes a considerable time, efforts and human resource. Stability in the process of
adaptation and during the whole life-cycle of the supporting runtime is a must. Referencing
this, we design system architecture with intrinsic stability features for the needs of RPD. We
discuss the topics of knowledge representation in section 2.1, knowledge communication in
section 2.2 and focus in details on the adaptation techniques in section 2.3 using cybernetic
models and elements from autonomic design for increased stability. While the paper focuses
on the proposed system architecture, the concrete used development techniques and standards
are pointed as well in section 3.

2 Methods for support of RPD
For the purposes of RPD was designed a software architecture in the frame of research project
Sfb374, sponsored by the Deutsche Forschungsgemeinschaft (Figure 1). There are three

 2

abstraction levels with clearly separated purposes. On the lower level stays the ASN
Framework which provides a knowledge presentation and storage model. On the second level,
serving as a middleware for communication and interaction to the knowledge, stays the Agent
Communication Layer. It takes care of the way the RPD user can find a service or another
agent and serves his queries by forwarding them to the knowledge base. On the highest level
is the RPD User Client which has to handle model realization and present to the user in a
friendly way the system's capabilities and methods for interaction with it.

Figure 1. Overview of the software architecture

Within the next paragraphs we present the three layers and we focus on the application of
models for enabling adaptation and optimization in RPD process.

2.1 Knowledge Representation
A main idea in knowledge-based systems is the access to knowledge as an external source.
The used by the system knowledge is not anymore implicitly stored within a program code
but is formed as explicit knowledge base. This split representation enables the users to work
with knowledge using different tools. It can be extended, modified or exchanged dynamically,
without interaction with the program code. In [1] is described an approach for design and
implementation of ASN suited for the purposes of RPD. The architecture includes three
levels of abstraction and is shown on Figure 2. The ASN meta-model level provides
functionality to model the higher levels and consists of three basic components: Concept,
Relation and Attribute. Concepts are the common expression unit by which all entities in the
RPD process are identified. Its Attributes that it aggregates describe the way in which
properties and features of the RPD objects are expressed. The meta-model level enables the
creation of models for various Domains. Here is included on one hand the mechanism for the
formation of RPD models and on the other side the metadata structure of the entire system.
On the ASN-Model level it comes into representation the knowledge of RPD domain. On the
higher run-time level is the presentation of the model, accessible by software programs a as
set of dependent object instances.

 3

Figure 2. The ASN architecture

Further more, the ASN framework fulfils not only the modelling of various knowledge forms
but also supports cooperation and online interaction between RPD users, synchronizes parallel
access on ASN, realizes visualization of ASN, ensures the ASN consistence and manages
versioning. The Active component is realized by the usage of constraints and ECA rules.

2.2 Knowledge Communication
Agent technology has proven itself to be a promising approach for implementation of
frameworks for cooperative support [2]. The developed in the frame of Sfb374 agent
framework [3], [4] was designed with the exclusive goal to facilitate RPD participants with
provision services for knowledge retrieval, aggregation, monitoring and process coordination.
The following requirements given by the RPD process and Agent concept are fulfilled.

An Agents system provides:

• Distributed services; agents can be instantiated and activated in different geographic
locations. For example a user can choose the place for access to an information retrieval,
and thus get use of the free resources of the network. He can query an agent located on the
closest to him supporting host, or even locally. This approach assures scalability and
prevents overloading of central access-point.

• Redundancy; the services provided by the agent system should be available at any time on
demand. In case of failure of service or the hosting environment the failed functionality
should be replaced by creation of the same agent type on another place. The user simply
sends a query to an agent, referencing it with a name. If the agent does not exist it is
created transparently for the user.

• Cooperation of agents; this is a preposition in the design of multi-agent networks where
every agent can profit from the functionality of the others. In the case with RPD, an
example is a user can give a complex question as a query which is separated by the agent
to several elementary queries which are sent to the retrieval agent. Returned results are
aggregated and delivered back to the user. An example of such case is the following

Attribute
Concept

Attributsvalue
Relation

Attribute

1
*

0..* 1..*

createObjekt()
createAttributes()
setName()

Concept

setName()
setValue()

Relation
*

RelationsDefinition()
ASN-Metamodel

Name : Text
Proxy : Person
Supervisor: Person

n 1
Team name : Text
Task : Text
Member : Person

ASN-Model

Name : Meier
Proxy : Müller
Supervisor :
Nobody

n 1
Team name : Team1
Task : Construction
Member : Meier
...

Run-time

Database

 4

query: “Find from the existing in the system details such a combination to produce a car
model with price under $10.000”. This query is then sub-divided to the following
sequence of queries expressed in pseudo-query language.

Example:

Q1 = “what are the components of the concept car?”
Q2 = “iterate for every combination from Q1”
 Q2.1 = “sum of components Q2 < 10 000”
 if true
 Q2.2 = “aggregate a car model with components from current Q2”
 return “model from Q.2.2”
 else return “empty result”

Four basic agent types are specified to serve the RPD users:

• Retrieval; serves knowledge retrieval by a given query from the user. The specially
developed language for accessing semantic network representations is called Active
Semantic Network Query Language (ASNQL) [4]

• Aggregation; serves in finding new knowledge from the existing one with means of user
questions.

• Coordination; directs the actions of multiple RPD participator according to a predefined
process model

• Monitor; accepts as input conditions and returns queried properties values in the moment
of satisfied condition

See Table 1 for more details about the implementation.

2.3 Process optimization
RPD was described as a continuous adaptation and exchange of accumulated knowledge
during the whole process of development. As such, without a concrete model which supports
this adaptation, there is a clear risk of process disbalance, resource locking and lack of
synchronization in its sub-processes. In addition to this risk, the supporting software modules
also suffer from need of automated management and adaptation to the needs of RPD. The
research, which was done to figure out existing methods on process optimizations and safe
adaptation in software supported systems outlined the base theories estimated to be
appropriate as a reference for implementation of an adaptive model – Lehman's Theory of
E-Type Systems [2], [5] and their evolution and secondly Stanford Beer's Viable Systems
Model (VSM) [6], [7]. As Lehman showed, the processes in the business domain are strongly
related with the specification, development and management of software for the support of the
domain. A conclusion part from his E-type systems theory states that a software supported
system can be represented as a multi-loop, multi-agent feedback system [8]. The requirements
for the proper operation of the sub-processes in such systems are given by the VSM. Proposed
and developed by Stanford Beer, it was initially designed for the purpose of understanding,
predicting and controlling organizations of different nature – biological, social and enterprise.
The VSM is based on studies and observation of the knowledge and information flow in many
organizations over a period of thirty-years. Beer’s goal was to discover the invariant
structures and behaviour in open systems and describe them with cybernetic and control
theory terms. Main properties of viable systems are adaptation and stability in time. Without
these properties an open system may become unusable to accomplish the goals it had been
built for. It is however an unbearable task to adopt such a global model of organization and

 5

apply it to an already developed and ongoing complex process as RPD. A single step
migration would imply too many changes (especially keeping the semantics inside the initial
organization while translating them) and is therefore too risky and error-prone. That is why as
a starting step we aimed to adopt the VSM communication requirements and namely the
requirement for communication channel requisite variety, a rule which assures proper
communication between elements and groups as well as potentiality for overall system
adaptation. The second step is to put the base for extension of the model that is stored in the
ASN RPD with the VSM-like self-reference model for functional grouping. These two added
features allow user queries to the knowledge base to be evaluated better on the base of
functional membership and position in the model's recursive structure. In the following
paragraphs are presented briefly the properties and requirements of VSM and the Active
Semantic Network Extension for adaptation of RPD knowledge for support of viable
processes.

2.3.1 VSM Properties and Requirements
There is extensive literature on the VSM and its application in knowledge management.
However there are few important things to be mentioned. The distinct point in the cybernetic
theory of organisations is that viable systems are defined as recursive self-referencing systems
that contain other viable systems. These can be then modelled using an identical cybernetic
description as the higher levels in the containment hierarchy. Beer expresses this property of
viable systems as cybernetic isomorphism.

Principles of the model:

• Self-reference; a term to describe how each part in a system makes sense in terms of the
other parts. The system defines or produces itself based on the parts and their
arrangement. This property is also called logical closure and is related to identity, self-
awareness, self-repair and recursion itself.

• Homeostasis; biological term representing the main characteristic of live structures -
maintenance of critical variables within certain limits to ensure stability of a system in
order to react to changes in the environment

Requirements:

• Variety requirement; the Law of Requisite variety as a critical and important cybernetic
rule which has to be kept for guaranteed system viability

• Dynamic requirement; the channels connecting the controlling and execution groups
should allow higher transfer capacity at a given moment than the originating subsystem
can generate at the same moment

• Transitional requirement; whenever transmitted variety passes a border of transduction, it
is necessary for the transducer to have at least the capacity of the communication
channel’s variety.

2.3.1.1 RPD and Software Variety
The requirements given by VSM apply to the cybernetic definition of variety: the number of
states a system may have in its state space. As a typical elementary example from the real life
one can imagine a thermostat that controls the temperature in a room. There are two types of
variety in this system – disturbance (environment temperature) and regulating (thermostat’s
control range). However, this definition for variety is not directly applicable to the nature of
software because of the qualitative characteristics of the different software elements included
in the supporting system: communication protocols, XML message schemas, remote

 6

interfaces, component descriptors, event logs, etc. On the other side the variety in the process
of RPD variety is seen as the different ways of communication and information exchange –
different versions of documents, plans, analysis, visual and audio feedback. We call this type
of variety observable variety. It is a qualitative measure for the variety which a certain system
element may introduce in the process of communication with other elements. Variety in ASN
is expressed as the set concepts relating to the act of communication establishment (see
section 2.4).

2.3.2 Existing implications of VSM
VSM is known for its application in organization and management of companies and
environmental management and planning [9]. However, the focus of this paper is on its
application in the symbiosis of adaptive processes and their supporting software. Such
combination requires a look at the existing project management methods and software design
efforts which include VSM-based models. Relevant to the field of project management is the
work of Schweininger [10] which exposes the values of cybernetic approaches and recursive
structures in management of complex projects. Extensive research on VSM usage in software
components has been done by Herring [11], [12], where the VSM is used as a reference model
for specification of component interfaces for integration in complex software systems. The
research also proposes methodology for development and is a valuable guide for design of
viable components interfaces. However it does not touch the subject of process definition and
knowledge communication and flow mechanisms which a viable systems necessarily
includes. Being aware of these approaches and aiming to add the missing bridge to a practical
VSM-based realization we focused on RPD knowledge storage, process representation on
different system levels and its internal handling by the software runtime.

2.3.3 ASN Autonomic Extension Model

As discussed, the primary aim of applying the VSM to the existing ASN oriented design is
related to the knowledge retrieval experience - optimization of retrieval results and better user
navigation. In order to keep compatibility with the current applications working with ASN
and in order not to change the meta-model it was decided all components of the extension to
be built using inherited ASN Concepts. Four extensions were added – Autonomic Element,
Autonomic Manager, Managed Communication Channel, and VSM Functional Group. The
adjective “Autonomic” was chosen because of its direct relevance to the currently ongoing
research initiatives Autonomic Computing and Autonomic Communication to which our
research team is committed.

On Figure 3 is shown a reduced version of the ASN meta-model and the extension model with
the help of which is realized a recursive structure with managed communication channels. As
seen, the three interacting components AManager, CommunicationChannel and FuncGroup
share the same root concept – AElement. This is needed in order to fulfill the requirement of
self-reference and self-containment, provided by FuncGroup. An instantiation of AElement
produces an object the properties of which can be monitored or modified by external control
units through a common interface, forming an element known in Autonomic Computing
literature as the term Managed Element. The AManager is the component responsible for the
monitoring and acting on managed elements and its primary purpose is the acknowledgment
for completed requisite variety in the CommunicationChannel. The concrete sequence of steps
for establishing a managed communication channel is discussed in Section 2.4. A viable
system contains by definition units which are themselves viable systems, and namely, the
group responsible for operations (the lowest system level) forms a new subsystem which
possesses the properties of the higher system level to which it belongs. The FuncGroup

 7

concept represents this recursive structure expressed on the diagram as aggregation of
recursive groups and managed elements. The additional constraints, such as properties of the
groups depending on the level number are left to the concrete implementation of the model in
the runtime module.

Figure 3. ASN Meta-model with Autonomic Extension

2.3.4 Adoption methods
The ASN Extension provides the needed base for the expression of semantics inside a viable
system, but without existing relations with the rest of the RPD model it is useless. The agents
and their decision algorithms for retrieval need these relations to evaluate the queries and
control the process. As pointed out, a gradual adoption is needed and there two phases in
which this can take place – direct assignment in the phase of knowledge addition and explicit
inheritance of existing concepts. The two methods allow to be used together throughout the
RPD process without affecting it.

• Direct assignment through addition – explicit specification of relations in the process of
adding new objects. Objects that are new for the process are assigned to functional groups
at the moment of their instantiation in the RPD support system, before they were actually
stored in the knowledge base (Figure 5). This requires the sub-process in which the object
acts to be already aware and adapted to act on the basis of communicating functional
groups. This way the communication channels for exchange of knowledge between
groups have the needed requirements to be created and operate.

• Explicit inheritance – relations between groups in VSM are expressed by the existing
communication channels between them. Because of the absence of such in the initial RPD
model, a set of concepts and relations are modified to inherit the properties of AElement
and CommunicationChannel concept respectively. The inherited concepts are still
compatible with the former model and can be used without affecting the process.

 8

2.4 Control of RPD Knowledge flow
The information between actors in the RPD process is exchanged in different ways – verbal,
visual or audio, with paper documents, electronic documents, etc. However, knowledge
representation and communication are not the only requirements for the aim to reach
qualitative process support. The supporting module needs an adequate knowledge flow
control to assure that the supported processes will remain consistent as required by the above
stated model requirements. An example for the relations in a system for support of any
operational domain is showed on Figure 4. This is Lehman's model which illustrates that the
operational domain and its support are instances of one and the same specification. There is a
need of validation and compatibility check between them to assure proper satisfying quality of
support.

Figure 4. Dependencies between operational domain, domain representation and supporting runtime

Extremely important requirement is the runtime to have the means to handle in a flexible way
the changes in the domain specification. A change and its improper handling may result to
faulty relations or inability for knowledge transfer between communicating parts. Following
the model on Figure 4 and applied to the concept of knowledge representation in RPD
environment results to the knowledge flow diagram on Figure 5. The RPD participant is part
of the support domain (RPD) and interacts with the supporting environment which internally
represents the process on two levels – ASN knowledge and runtime objects.

Figure 5. RPD Knowledge Flow and Model Realization

 9

The ASN Knowledge reflects the real RPD process which includes the formally named
communicating objects C1-C3 and their communication channels R1-R4. These are
represented as ASN Concepts. The object factory is a bridging mechanism that takes care of
the instances of the concepts and communication channels with the properties from the
knowledge base. These objects are used by the execution logic, which was omitted to simplify
the diagram. The instances serving communication (R1-R4) between the objects have an
important role in the control of the transmitted informational variety. Practically the RPD
communication capabilities are verified on request for channel establishment.

For a successful communication between the two endpoints A and B, a channel connecting
them is checked for provided and handled variety and return one of the possible states it can
have:

• Both endpoints are compatible and will have accurate two way communication

• Both endpoints are incompatible and will not be able to transmit accurately variety

• Endpoint A will receive variety accurately, but B not (A to B accurate).

• Endpoint B will receive variety accurately, but A not (B to A accurate).

The concrete sequence of interaction of objects with the communication channel is shown on
Figure 6.

Figure 6. Communication channel and Channel Manager interaction

2.5 Benefits

The discussed approach has several advantages in comparison with the traditional methods for
reliable software development [13, 14].

• Proposes a clear and polished organizational model for support of RPD

• Controls distributed system entities’ interaction in sense of their compatibility with the
goals of the system

• Monitors overall ability of the system to be adapted in time, without interrupting the
business process which uses it

• Inconsistency problems are resolved before they caused cascaded failure

 10

3 Realization
Since the beginning of the development of the components for the discussed model it was
decided that an implementation should use as much as possible open standards and
technologies. This allows interoperability with other systems and easier support when it
comes to configuration, management and updates of the system. Here are described the used
standards and methods for every of the levels in the architecture. The system is designed to be
distributed and scalable and uses middle-ware components which offer the advantages of
additional separation of the services and implementation of routine problems like object
persistence. As a programming language was used Sun Microsystems Java 2 and its
specifications Java 2 Standard Edition for the implementation of the Agents Framework and
for the ASN run-time the Java 2 Enterprise Edition. Concrete information about the
implementation of the layers is provided in Table 1.

Table 1. Used standards and technologies

Layer Standard/Technology Reason
Data Persistence SQL, MySQL Widely adopted, fast

SELECT results
ASN Runtime Java 2 Enterprise Edition, JBOSS

Application Server
Platform-independent,
Enterprise standard,

Automated
persistence

ASN Meta-model Components Enterprise JavaBeans with
Container Managed Persistence

Component-oriented
design, database

independent
Agent Framework Java 2 Standard Edition See ASN Runtime

Agent Communication Protocol Token-Ring-like based on XML
messages

Open standards,
proven stability and

operability
Agent Network Layer Multicast, Reliable Lightweight

Multicast Protocol (LRMP)
Group-oriented,

supported by
enterprise vendors

Examples:

Figure 7. Example for ASNQL User Query to a retrieval agent

 11

Figure 8. Example for a query result

4 Conclusion
Based on principles of Cybernetics and Autonomic Computing we designed a software
architecture for the purposes of RPD. Key properties of ASN and MAS as middleware were
discussed in relation to their organization to support a viable RDP knowledge integration and
communication. Key advantages of this approach are optimization of agent functionality,
stability and clear functional separation of the RPD knowledge.

References

[1] Roller, D., Eck, O., Dalakakis, S., “A Knowledge based support of Rapid Product
Development” Journal of Engineering Design, Taylor & Francis Ltd, Vol. 15, No. 4,
2004, pp. 367 – 388.

 12

[2] Ye, Yeming, Churchill, E., “Agent Supported Cooperative Work”, Series Multi-agent
Systems, Artificial Societies and Simulated Organizations, Vol.8 , Springer, 2003

[3] Diederich, M. K., Leyh, J., “Agent Based Middleware to Coordinate Distributed
Development Teams in the Rapid Product Development”, Proceedings for the
Conference on Product Development, 1st Automotive and Transportation Technology
Congress and Exhibition, Barcelona 2001.

[4] Dalakakis, S., Stoyanov, E., Roller, D., “A Retrieval Agent Architecture for Rapid
Product Development”, Perspectives from Europe and Asia on Engineering Design and
Manufacture, X.-T. Yan, Ch-Y. Jiang, N. P. Juster, eds., Kluwer Academic Publishers,
2004, pp. 41-58.

[5] Lehman, M. M., with DE Perry and JF Ramil, “On Evidence Supporting the FEAST
Hypothesis and the Laws of Software Evolution” Proceedings Metrics'98, Bethesda,
Maryland, 1998.

[6] Beer, Stafford, “The Heart of Enterprise (The Managerial Cybernetics of Organization”,
John Wiley & Sons, ISBN: 0471275999, 1979.

[7] Beer, Stafford, “Brain of the Firm (Classic Beer Series)”, John Wiley & Sons; 2 edition,
ISBN: 047194839X, 1994.

[8] M.M. Lehman, "Programs, Life Cycles, and Laws of Software Evolution ," Proceedings
of the IEEE 68(9), pp. 1060—1076, September 1980

[9] Klark, M. “A Cybernetic approach to Sustainable Development”. Planning in North
West England during the 90s, GBER Vol. 2. No 1 pp 34-39.

[10] Schwaninger M., Koerner M., “Managing Complex Development Projects: A Systemic
Toolkit Based on St. Gall Management Framework”, Discussion Paper, No 37, 2000.

[11] Herring, C., Kaplan, S., “The Viable System Model for Software”, 4th World
Multiconference on Systemics, Cybernetics and Informatics, SCI2000, 2000.

[12] Herring, C., Kaplan, S., “Viable Systems: The Control Paradigm for Software
Architecture”, Australian Software Engineering Conference, 2000. Canberra.

[13] Rothermel, G., Harrold, M., “Analyzing regression test selection techniques”, IEEE
Transactions on Software Engineering, 22(8):529-551, August 1996

[14] Rothermel G., Harrold, M., “A Safe Efficient Regression Test Selection Technique”,
ACM Transactions on Software Engineering and Methodology, 6(2): 173-210, April
1997

