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Abstract 

Design margins provide additional performance capability above required basic performance 
and may be specified by a system designer to compensate for uncertainties. It is commonplace 
to account for uncertainties by introducing design margins based on experience, however, 
times are changing and there is currently much interest in the application of systematic 
methods, that is, specifying a design margin based upon theory and not practical experience. 
The primary objective of this paper is to present a survey of existing knowledge and 
approaches related to the management of design margins across a broad range of engineering 
domains. Particular attention is given to design margins in a performance context, i.e. design 
margins intended to improve the probability of a system/process performing to requirements. 
Furthermore, based on the surveyed literature, several prevalent concepts pertaining to the 
management of design margins will be identified. Such prevalent concepts are significant 
because they form the basis of and justify the requirement for a quantitative approach. Indeed, 
several quantitative approaches are identified and surveyed which seek to evaluate such 
design margins as an alternative to their empirical selection.  
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1 Introduction 

Few engineered systems are designed with the benefit of complete information; consequently 
the assurance of performance can seldom be perfect. Moreover, many decisions during the 
design process are invariably made under conditions of uncertainty. Therefore, the 
accumulation of prediction errors (due to environmental uncertainty or measurement 
inaccuracy for example), omissions and design iterations during the design process may 
occur, which in turn affects the probability of the given system not performing to 
requirements. For example, Hockberger3 with reference to marine engineering stated that “a 
designer faces a range of uncertainties (which decrease in magnitude as the design progresses) 
as to the ultimate physical characteristics of the ship best capable of satisfying a certain set of 
customer requirements” [3]. To provide some protection from these sources of uncertainty, 
the designer attempts to anticipate these uncertainties with a design margin. That is, he or she 
designs the ship with for example, enough extra space, structural strength or additional 
performance capability.  

Design margins can be employed to increase the likelihood that a specified level of 
performance can be attained by a given system. That is, they are the additional performance 
capability incorporated into a system to compensate for uncertainties, termed within this paper 
as margins of performance. Frequently, design margins are empirically selected, i.e. they are 
specified based on experience and/or standard practice and not through theory or systematic 



 2

methods. For example, Slager et al.4 discussed how the service margin, (a propulsive margin) 
for United States Navy ship designs, is customarily assumed to be 25% [4]. However, within 
the literature documented in this paper, this practice is argued to be inappropriate due to the 
potential high costs associated with design margins and furthermore, such margins can be 
over excessive or disproportionate in nature.  

A discussion follows of a number of noteworthy papers available within the literature, all of 
which consider margins in a performance context. Sections 2, 3 and 4 consider literature 
available within aeronautical/astronautical engineering, marine engineering, chemical 
engineering and power generation respectively. In surveying such literature, a number of key 
issues related to the quantification of margins of performance are identified such as the use of 
probabilistic design methods to rationally and analytically make design decisions in the 
presence of uncertainty. The results of this survey are discussed in section 5 where the 
prevalent concepts and key issues are summarised. Furthermore, the requirement for a more 
generic approach for the quantification of margins of performance in engineered systems is 
identified. Finally, section 6 presents current research being conducted at the University of 
Newcastle upon Tyne’s Engineering Design Centre (EDC) in conjunction with BAE Systems 
– Systems Engineering and Innovation Centre (SEIC) at Loughborough. The objective of this 
research is to develop a unified, holistic and generic approach, one which satisfies all of the 
key issues highlighted in this paper.  

2 Aeronautical/Astronautical Engineering 

Cribbs5 presented a Monte Carlo analysis method devised to determine the probability 
distribution of design speed for hypervelocity vehicle (Single Stage To Orbit or SSTO rocket) 
designs studied for the X-30 National Aerospace Plane program. The method presented is 
based upon linear perturbation theory on velocity and mass fraction models and uses 
uncertainties in fundamental vehicle performance variables such as drag, specific impulse, 
empty weight and the vehicles performance sensitivity to each variable. Furthermore, the 
method is used to develop vehicle performance requirements which provide the necessary 
margins to ensure the success of the SSTO mission.   

A Monte Carlo computer program was developed by Cribbs5 which randomly selects a 
perturbation value for each of the design variables considered such as combustor efficiency 
and zero-lift drag coefficient and simulates the given mathematical models representing 
velocity and mass-fraction. In aerospace engineering, the mass fraction of a rocket is an 
important measure of its efficiency and it measures the total amount of mass delivered to orbit 
as a fraction of the weight of the fully fueled vehicle prior to launch. In the case of Single 
Stage to Orbit vehicles, the mass fraction is simply the weight of the vehicle empty compared 
to full. Mass-fraction vs. velocity performance curves are then presented for each Mach 
regime. Furthermore, the variables are also perturbed at their nominal values or the standard 
design configuration. After many simulations (1000 in the example presented) a probability 
distribution of velocities attained is plotted (see figure 2.1). Cribbs5 stated that the resultant 
probability distribution of maximum attainable velocity can be closely approximated by a 
normal distribution which has the familiar bell shape and its sample space extends from minus 
to plus infinity. Cribbs5 stated “this is a common result when many distributions are 
combined” [5].  
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Figure 2.1. Probability Density Distribution of Maximum Velocities [5] 

In making this approximation, it is assumed by the authors that Cribbs5 was referring to the 
Central Limit Theorem. In  an engineering context, Bury7 discussed how the normal 
distribution must be approached with caution, particularly if inferences will focus on the tails 
of the distribution as is often the case in engineering. Furthermore, the normal distributions 
sample space extends from minus to plus infinity which may not be appropriate in many 
engineering contexts. However, Bury7 stated that “on the basis of a central limit theorem the 
normal distribution is the model of choice if it can be argued that the random variable under 
consideration is the aggregate sum of many [independent] underlying causes” [7]. With 
regards to postulating the central limit theorem, Crawshaw and Chambers8 suggested that the 
sample size of independent underlying causes should be greater than 30. 

Using the probability distribution of maximum attainable velocity, the probability that the 
SSTO vehicle can achieve a particular maximum velocity can be estimated. In the example 
presented by Cribbs5 the probability of reaching the design speed target (7802.88 m/s) is very 
low and hence the vehicle should be designed to carry more fuel than the nominal vehicle 
sizing. For example, a velocity margin of approximately 518.6 m/s is required for a 90% 
confidence of performing to requirements. This is then translated to a weight margin of 30%.  
However, it is not clearly expressed how the stated design margin should be allocated. That is, 
upon specifying how much design margin is required to achieve a specified level of 
performance, information regarding how it should be allocated into the SSTO vehicle is not 
well defined. The method presented by Cribbs5 is a specialised method that is tailored for a 
specific problem, that is; how much velocity margin is required for an SSTO vehicle in order 
to achieve a given mission confidence of performing to requirements. Hence, specifying a 
velocity margin of 518.16 m/s or a weight margin of 30% may be appropriate for this 
particular problem. Finally, Cribbs5 discussed the concept of a robust design which has built 
in margins to assure that a given flight vehicle will achieve its design goal. 

With reference to SSTO vehicles, it is argued that [10] Computational Fluid Dynamics (CFD) 
is an essential part of the design process for aerospace planes and furthermore, SSTO 
aerospace planes with air-breathing supersonic and hypersonic combustion are going to be 
largely designed by means of CFD. Mehta10 discussed how the existing data base for 
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designing SSTO aerospace planes with supersonic and hypersonic combustion is very limited 
and the existing ground-based test facilities and test facilities are deficient for developing an 
adequate data base. “computational fluid dynamics on the other hand can go a long way 
toward determining the performance and specifications of these planes” [10]. Mehta10 argued 
that the challenge posed by all aerospace plane design efforts is to obtain credible CFD 
results, to assess the probable (quantified) uncertainties in those results and to certify the 
codes as tools. He identified the primary requirements for credible computations as; (1)the 
fluid dynamics of the boundary layer, mixing and combustion are adequately modelled and 
(2) the necessary computing resources are available. The inability to fulfil these requirements 
leads to uncertainties in computed results which in turn leads to risks. It is noted [10] that 
addressing risk is addressing uncertainties and the credibility level of the design is, in part 
determined by quantifying CFD uncertainties. With this in mind Mehta10 identified two types 
of risk associated with aerospace planes; (1) success risk and (2) safety risk. Success risk is 
defined as the probability of not achieving the objectives of the program whereas safety risk is 
the probability of potential failures and hazards. In the assessment and reduction of success 
risk, the potential design margins are considered. Furthermore the relationship between design 
margins and the quantification of uncertainty is recognised. Mehta10 stated that “a margin to 
be built into a design requires quantification of uncertainties because the margin is a 
quantitative entity” [10].  

Mavris et al.9 examined ways in which to implement probabilistic design methods in the 
aircraft engine preliminary design process. The focus of this is to analytically determine the 
impact of uncertainty in engine component performance on the overall performance of a 
notional large commercial transport, particularly the impact on design range, fuel burn and 
engine weight.  The emphasis of the paper was twofold: 

1. To find ways to reduce the impact of uncertainty in engine component performance 
through appropriate engine cycle selections. 

2. To find ways to leverage existing design margin in order to squeeze more performance out 
of current technology.  

The approach presented by Mavris et al.9 utilises standard Response Surface Methodology 
(RSM) in conjunction with the Fast Probability Integration (FPI) method. FPI is described as 
an advanced probabilistic analysis method that was developed in the early 90’s at the 
Southwest Research Institute (SwRI) under contracts from NASA Lewis Research Centre. It 
is reported [9] that “FPI works by using the actual analysis code and approximates a Monte 
Carlo analysis as opposed to the RSM/Monte Carlo method which approximates the analysis 
code and then uses Monte Carlo analysis”[9]. The objective of using RSM is to create an 
approximate analytical model of a given data set (generated by running the existing analysis 
code) using Response Surface Equations (RSE) to model data behavior.  

The RSEs are used to plot contours which depict the design space in a graphical and intuitive 
way, showing the constraints as well as where the best design range regions are located. In 
addition to design range, fuel burn and engine weight are also considered although design 
range receives the preponderance of interest.  Mavris et al.9  stated “in effect, these contours 
are a slice of data at a given probability level (or p-level) with the RSEs representing design 
performance at that p-level are constructed” [9]. An example of such a contour plot can be 
seen in figure 2.2.  
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Figure 2.2.  “Slicing” of CDF’s to Create Probability Contours [9] 

Following the steps discussed, it is argued [9] “from this point, the problem becomes an 
exercise of trying to find the best balance between weight, fuel burn (specific fuel 
consumption) and the probability of meeting the design range target while simultaneously 
avoiding violation of any constraints (such as limits on fan diameter)” [9]. Mavris et al.9  
noted that such a method can be used to leverage the existing design margin available in order 
to achieve better performance with the same technology level [9]. Finally, it can be argued [9] 
that probabilistic design methods provide an analytical framework for answering such 
questions as “how much design margin is really necessary?”. An implication being the 
empirical selection of design margins is inappropriate. 

Colbourne et al.11 demonstrated using optimisation and trade-off studies that design margins 
can be systematically adjusted to quickly retune the design of a helicopter and to generate 
trade-off curves. With regards to the RASCAL Black Hawk helicopter it was demonstrated 
that a 5% design margin applied to control systems gives the best handling qualities 
performance without excessive actuator activity. The optimisation and trade-off studies are 
performed by [11] using software named “CONDUIT”. CONDUIT tunes the design variables 
to optimise the system to the objective handling quality performance criteria whilst satisfying 
the Level 1 region constraints. The Level 1 region refers to aircraft handling characteristics 
that are satisfactory without requiring improvement and this is the desirable performance 
region. The CONDUIT software incorporates the RASCAL control laws and flight control 
system which operates the RASCAL research actuators which in turn drive the Black Hawks 
primary servos. The nature of this directly effects the handling qualities of the helicopter in 
question. Colbourne et al.11 discussed that the Level 1 handling qualities were achieved by 
increasing the pitch and yaw command model bandwidths and when this was achieved 
CONDUIT minimised actuator energy and crossover frequency while maintaining Level 1 
handling qualities.  

A trade-off study was performed for the RASCAL design by looking at the effect on 
performance by varying the design margin. CONDUIT accommodates uncertainty in the 
mathematical model and changes in actual flight conditions by allowing the user to include a 
design margin on the helicopter flight control systems. However, although it discussed how 
uncertainty is accommodated in the design margin trade-off, no detail is provided to the 
nature of the analysis, that is; the type of uncertainty considered, how uncertainty is quantified 
or any estimation to the probability of the system underperforming. The design margin in this 
case enforces overdesign to ensure that acceptable solutions lie a set distance into the Level 1 
region and not on the Level 1/Level 2 boundary (see figure 2.3). It is stated that [10] this 
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builds in “design robustness”. However, the design margin is not considered by the author to 
minimise performance variance, only to provide a region to which performance can deviate 
into without crossing the Level 1/ Level 2 boundary.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Handling Quality (quickness of roll) and design margin [10] 

3 Marine Engineering 

With regards to marine engineering, two major categories of design margin are identified by 
[12]; Design and Construction Margins (D&C Margins) and future growth margins. D&C 
margins are allowances made during the preliminary design of a ship due to unknowns 
associated with the design process. Future growth margins are primarily allowances made at 
the request of a customer in anticipation of the future installation in a ship of items that are 
not required at the time of construction. Furthermore, they enable the addition of equipment 
during modernisation or conversion thus enhancing flexibility and adaptability. A third major 
classification is identified by [3]; the assurance margin. Assurance margins are defined by [3] 
as a “key element in the probability of a system being able to perform to requirements; that is, 
to attain a specified level of performance under specified conditions” [3]. In agreement, 
Garzke and Kerr[13] stated how assurance margins are employed to ensure that a specified 
level of performance can be attained during the operational life of a ship. Therefore, assurance 
margins are primarily concerned with operational capability and performance rather than 
predominantly with design, as is the case with future growth and D&C margins.  

Hockberger3 illustrated an assurance margin for the general case where the load for which a 
system is being designed is not a single known value, but rather a range of possible values 
forming a distribution having some mean µ and some standard deviation σ. The capability of 
the system to carry that probabilistic load is again not a single known value, but a range of 
possible values forming a second distribution. It can be seen in figure 3.1, from the shaded 
overlapping region, that it is possible to have loads that exceed the systems capability 
resulting in underperformance.  
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Figure 3.1. Ilurstration of the asurance margin 

Hockberger3  stated how the probability that the system will meet its requirements can be 
increased by causing the two distributions to move further apart as illustrated in figure 3.1. 
The assurance margin therefore can be defined as the measure of separation of the two 
distributions of load/demand and capability. Frequently, such design margins are empirically 
selected and it is discussed [3] how a standard 25% assurance margin on power is common 
practice in ship propulsion design. In agreement, Levine and Hawkins15 discussed how such 
margins are empirically selected and in addition, argued that “the empirical selection of 
design margins is inappropriate and represents a large investment, one which warrants 
thorough justification” [15]. Further evidence of considerable power margins in ships can be 
found within the literature when considering hydrofoil craft. U.S. Navy hydrofoil craft are 
specified with a range of assurance margins on power of the order 20% - 50% [14]. However, 
because the magnitude of this margin is a prime factor in the sizing of the propulsion system, 
it is essential that it is not arbitrarily overspecified [14]. 

Finally, Hockberger3 argued that the application of a standard assurance margin ignores 
important differences in the physical characteristics of individual systems and the purposes 
for which those systems are designed. Hence a standard margin such as 25% may not be 
effective in all cases. An example was provided: Even between two ships of the same size and 
sea response, the value of a particular probability of making the required speed may differ 
considerably depending on their respective missions.  

4 Chemical Engineering and Power Generation 

With reference to uncertainty in chemical and environmental systems, [19] discussed how 
uncertainty always exists in such systems and how there is a problem in evaluating their 
effects. It is discussed [20] how these and other related problems are overcome by considering 
appropriate design margins. It is highlighted that design margins are provided in a chemical 
plant for the following reasons: 
 
• To take care of any variations in input/output material specifications, 

• To take care of any operational problems, 

• To take care of any unknown factors influencing process plant capacity or product quality, 
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• To take care of any fabrication/equipment selection errors. 

Furthermore, [20] suggests a cautious approach when selecting appropriate design margins so 
that all the benefits are taken up while disadvantages are minimised.  

Dittmar and Hartmann16 stated that, “in the design of process units and systems, design 
margins are often added to the design variables in order to obtain a preventative compensation 
for parameter uncertainties in the mathematical models used for the design”. Furthermore, it is 
discussed how design margins exert a decisive influence on the cost of chemical plants and 
with chemical plants becoming more complex, the empirical estimation of design margins 
becomes unjustified [16]. Dittmar and Hartmann16 presented a method for the optimal 
estimation of design margins in the sense of minimisation of systems reserves based on a 
proposition by [17] and [18]. Takamatsu et al17 stated “it is usual in practical design of 
engineering systems to add some margin estimated from experience to the design variables 
obtained from theoretical or mathematical equations”.  However, they discussed how the 
value of design margins can be quantitatively estimated by using the concept of sensitivity 
and linear programming.  

Dittmar and Hartmann16 demonstrated the application of the method to a reactor-separator 
system. The system consists of a Continuous Stirred Tank Reactor (CSTR) of volume V and a 
separator. In this example the desired product produced by the system is a raw material 
termed R. Dittmar and Hartmann16 developed a mathematical model of the reactor-separator 
system and a set of associated boundary conditions of the model. One boundary condition to 
be satisfied in this case is that the raw material R should be produced at a rate of 70mol/h.  
The determination of the design margin in this case involves optimising the mathematical 
model (by means of LP) where the intention is to satisfy the boundary conditions of the 
system (material R to be produced at a rate of 70mol/h) which may be compromised due to 
the effect of a number of uncertain variables (reactor rate constants KB and KX). This is 
achieved through appropriately increasing the reactor volume V and simultaneously 
minimising the associated increase in system cost. The increase in reactor volume constitutes 
the design margin and the most undesirable system state occurs when the uncertain variables 
(reactor rate constants KB and KX) are located at their respective lower limits.   

5 Conclusion 

The issue of design margins, specifically margins of performance, has received the attention 
of many researchers from a variety of engineering domains including marine engineering, 
aeronautical/ astronautical engineering and chemical engineering. With regards to margins of 
performance, a number of prevalent concepts have been identified across the aforementioned 
domains as follows: 

• Uncertainty is identified as a primary driver for the requirement of design margins. 
Furthermore, with reference to aerospace design, [10] stated that “in order to make 
rational decisions regarding the placement of design margins, uncertainty should first be 
evaluated in a quantitative manner”.  

• The empirical selection of design margins is highlighted as being inappropriate due to the 
potential high costs associated with them. For example, [3]] discussed the standard 
practice of using a 25% Assurance Margin on propulsion power in the design of ships.  
Furthermore, [16] discussed how design margins exert a decisive influence on the cost of 
chemical plants and with chemical plants becoming more complex, the empirical 
estimation of design margins becomes unjustified. 
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Such prevalent concepts are significant because they form the basis of and justify the 
requirement for a quantitative approach for the evaluation of margins of performance in 
engineered systems. Indeed, several quantitative approaches have been identified and 
surveyed which seek to evaluate such design margins as an alternative to their empirical 
selection. In addition to identifying a number of prevalent concepts, a number of key issues 
related to the surveyed approaches are identified as follows: 

1. Quantification of uncertainty has been identified with respect to the probabilistic approach 
in the evaluation of design margins [5, 9; 21, 3], 

2. Mathematical modelling and simulation underpin the analysis of systems when 
considering uncertainty, probabilistic design and the quantification of design margins [5, 
16, 3, 15, 21, 9],  

3. Probabilistic design methods are utilised to rationally and analytically make design 
decisions in the presence of uncertainty and with regards to the quantification of design 
margins [9],  

4. It is argued that there is scope to incorporate robust design when quantifying and 
allocating design margins in the sense of minimising performance variance [5, 11],  

5. Finally, optimisation can be utilised to accomplish the following: 

• The minimisation of performance variance [11].  

• The leverage of performance whilst simultaneously satisfying the design margin 
requirement, that is; a design margin can be allocated in an optimal manner [16]. 

In summary, the specific literature surveyed in this paper provide valuable contributions in the 
field of design margins and more specifically, margins of performance. However, the actual 
approaches for the quantification of performance margins surveyed in this paper are limited in 
their application. That is, they are designed to address a specific problem within their given 
engineering domains. Hence, on this basis, the main outcome of this literature survey is that 
there is scope for a more generic and systematic approach which considers collectively the 
aforementioned key issues. What follows is a brief but concise overview of the current 
approach. However, much discussion regarding the mathematical and statistical background is 
excluded due to space constraints. 

6 An Approach for the Quantification of Margins of Performance 

The approach described here enables metamodels (models of models) to be developed of 
given systems from existing computerised models through the utilisation of response surface 
based robust design techniques. In general, using design of experiments, a given computerised 
model can be simulated or exercised for given settings of the model variables. From the 
generated data, polynomial regression models can be fitted accordingly using standard 
Response Surface Methodology (RSM). RSM comprises a group of statistical techniques for 
empirical model building. By careful design and analysis of experiments or model runs, it 
seeks to obtain a simplified relationship between a number of predictors, or input variables 
and an output or response variable. Intuitively, such a response of interest is considered as the 
performance characteristic under investigation.  In accordance with the response surface 
approach to robust design, model variables are classified as either noise (zi) or control 
variables (xi). Control variables refer to those whose settings can be changed by the designer 
whereas noise variables are those that display inherent variability and/or the designer has no 
direct control.  
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With this in mind, the approach seeks to generate a response model of the form 
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where y is the response of interest, βi, βii and βij are the regression coefficients for the control 
variables xi, their quadratic terms and interactions respectively, δi are the regression 
coefficients for the noise variables zi, γij are the regression coefficients for the interactions 
between the noise and control variables and finally, ε is the error due to regression. Using the 
transmission of error approach as discussed by Montgomery[21] (expanding equation 1.1 in a 
first order Taylor series expansion about zi = 0), models for expectance and variance can be 
derived as follows 
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Where f(x) in (1.2) is the portion of the model that involves only the control variables (with 
respect to equation 1.1), in equation (1.3) σz

2 is the variance and σ2 is the error due to fitting 
the original regression model, i.e. equation (1.1). Due to the first - order Taylor series 
expansion, there are no noise variables present in equations (1.2) and (1.3). Hence, the 
engineer can potentially set the control variables to achieve a target value of the expectance 
and minimise the variability transmitted by the noise variable. Furthermore, although the 
variance model involves only the control variables, it does contain the interaction regression 
coefficients (δi and γii) between the control and noise variables. This is how the uncertainty 
transmitted by the noise variable influences the response y. The principal advantage of 
utilising RSM is that the fitted polynomial regression model can be used as a replacement or 
proxy for the computerised model (valid for the design space regressed) and all inferences 
related to uncertainty analysis and optimisation are derived from this fitted model. 
Furthermore, design of experiments and regression analysis have been applied to a broad 
range of engineering disciplines, such as the design of mechanical components [22], 
reinforced concrete columns [23] and examining aircraft concept feasibility and viability [24]. 
Provided RSM can be applied to a given system, the approach  described here is potentially 
applicable to a variety of systems and is hence generic in nature.  

Considering the prevalent concepts and key issues identified within this paper, it was 
established that uncertainty should be evaluated in a quantitative manner. Hence, the approach 
includes appropriate uncertainty analysis procedures. Upon deriving models for the 
expectance and variance of the response of interest, a description of the uncertainty in the 
performance capability of the given system under investigation is required. More specifically, 
the probability the given system will underperform (with respect to a specified performance 
requirement) is desired. In order to do so, the approach exploits Chebyshev’s inequality and 
the Vysochanskii - Petunin inequality for estimating the probability of underperformance of a 
given system. Chebyshev’s Inequality is a result in probability theory that places an upper 
bound on the probability that a random variable will differ from its mean by more than a fixed 
number t.  
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If we let a random variable X have expectance E(X) and variance Var(X) and let t be any 
positive number 

( )[ ] ( )
2t
XVartXEXP ≤≥−  (1.4)

With regards to the approach, it is possible to obtain an estimate of the probability of 
underperformance provided we define the performance characteristic under investigation 
(modelled using a second - order response model) y as a random variable with expectance 
Ez[y(x, z)] and variance Vz[y(x, z)]. By doing so, Chebyshev’s inequality can be employed to 
place an upper bound on the probability that a given system will generate an undesirable level 
of performance. For example, consider the second - order response model (1.1) and the 
corresponding models for its expectance and variance (1.2) and (1.3).  If we define a 
performance requirement placed on the system under investigation as Ry (Ry > 0) the 
probability of underperformance is given by (1.5). That is, an upper bound can be placed on 
the probability that a given system will underperform with respect to the pre - defined 
performance requirement Ry. Note that Ry is corrected for the expectance Ez[y(x, z)], that is, 
we are calculating the probability that the performance will differ from the mean a distance of 
| Ry - Ez[y(x, z)]|, that is, t ≥ {| Ry - Ez[y(x, z)]|}. Note, | Ry - Ez[y(x, z)]| gives the modulus of 
Ry - Ez[y(x, z), i.e. the magnitude irrespective of sign. 
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Chebyshev’s inequality has the prime advantage of universality, that is, it applies to all 
random variables whose first and second moments exist [26]. Equivalently, the theorem 
applies to non - bell shaped distributions and therefore, no assumption on the output 
distribution in an uncertainty analysis is required [27]. Some criticism of Chebyshev’s 
inequality exists within the literature, specifically, the theorem can provide loose bounds on 
the probability that a random variable will differ from its mean by more than a fixed number t. 
However, tighter bounds (on the probability of underperformance) can be generated on that 
produced by Chebyshev’s inequality using the Vysochanskii - Petunin inequality. It is noted 
[27] that if the unimodal probability distribution or density function is not symmetric then the 
inequality applies only for high t, that is, when t2 > B2. Var(X) where B is approximately 
equal to 1.38539[28]. If this is not the case however, Chebyshev’s inequality is appropriate. 
The probability of underperformance using the Vysochanskii - Petunin inequality is given by 
(1.6), where the distribution is assumed unimodal and t2 > B2. Var(X).  

( )[ ][ ] ( )[ ]
2.9
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t

zxyVtzxyEyP z
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Upon estimating the probability of underperformance of a given system, the approach then 
seeks to calculate how much additional performance capability is required to improve the 
probability of performing to requirements. Suppose an engineer desires a given system to 
perform to requirements with a probability of P. Equation (1.6) can be re - defined in order to 
estimate what expected performance (Ez[y(x, z)]) would indeed ensure that a given system 
would perform to requirements with a probability of less than PR. That is, the engineer wishes 
to know by how much does the expected performance of a given system need to be improved? 
For the purposes of the approach, this expected performance is defined as the target expected 
performance TEz[y(x, z)]|.  
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This can be found by solving (1.7) for the target expected performance TEz[y(x, z)] when PR, 
Vz[y(x, z)] and Ry are known.            

( )[ ]
( )[ ]{ }2

,

,

zxyEy

z
R

z
TR

zxyVP
−

≤  (1.7)

To solve (1.7) we express the given inequality with zero on the right hand side and then 
determine the roots defined by TEz[y(x, z)]. For (1.7) this gives 

( )[ ] ( )[ ]
( )[ ] 0,2 2

,
2

, ≤







−+−

R

z
yzxyEyzxyE P

zxyVRTRT
zz

 (1.8)

For example, Suppose the gross thrust of a jet engine y (modelled using a second - order 
response model) has expectance Ez[y(x, z)] 16325 N and variance Vz[y(x, z)] 235936 N2. 
Furthermore, a performance requirement Ry is specified to be ≥15124 N. The probability of 
the engine producing 15124 Newtons or less (i.e. underperforming) is given by Chebyshev’s 
inequality as follows  

[ ]
( )

[ ] 16.01632515124
1632515124

2359361632515124 2 ≤≥−
−

≤≥− tPisthattP  (1.9)

That is, probability of underperformance is estimated to be no greater than 16%.  The quoted 
Chebyshev inequality is known as the two tailed version and thus the calculated probability of 
failure is worse case as it assumes that the thrust distribution is skewed to the pessimistic 
extreme. Now suppose an engineer desires a 95% probability that the engine will perform to 
requirements, i.e PR = 0.05. The target expected thrust TEz[y(x, z)]| that will achieve this aim is 
estimated using (1.10) and (1.11). The calculation is as follows 

( )[ ]{ }2
,15124

23593605.0
zxyEz

T−
≤  (1.10)

( )[ ] ( )[ ] 030248228735376 2
,, ≤+− zxyEzxyE zz

TThence  (1.11)

The roots of (1.11) are TEz[y(x, z)]| = 17296 or TEz[y(x, z)]| = 12952. Therefore, intuitively, the 
desired target expectance TEz[y(x, z)]| is 17296 N of gross thrust or an additional performance 
capability of TEz[y(x, z)]| - Ez[y(x, z)] = 971 N. More specifically, a performance margin of 
971N (a 5.9% increase) gross thrust is required. Confirming that if the jet engine can be 
modified to produce an expected gross thrust of 17296 N, the probability of 
underperformance is no greater than 5%, i.e. a 95% probability of performance to 
requirements. Finally, current research at the Engineering Design Centre is now focussing 
upon a method to allocate a performance margin once its requirement has been established. It 
is proposed that this can be achieved using an appropriate optimisation strategy where the 
optimisation problem can be posed as follows: 

Minimise Vz[y(x, z)] 

Subject to 
Ez[y(x, z)] = TEz[y(x, z)]| 

a ≤ xi ≤ b 
 
That is, to simultaneously minimise performance variance whilst achieving the target 
expected performance through the manipulation of the control variables xi.  
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